产品|公司|采购|招标

环保APP正式上线

rto焚烧炉_北京涂装废气rto焚烧炉

参考价面议
具体成交价以合同协议为准
  • 公司名称广东大辰环境工程有限公司
  • 品       牌
  • 型       号
  • 所  在  地
  • 厂商性质生产厂家
  • 更新时间2022/2/9 11:18:52
  • 访问次数216
产品标签:

在线询价收藏产品 点击查看电话

广东大辰环境工程有限公司是专业环保设备制造厂家,全国数十家大型环保公司*设备供应商。公司专注环保事业十余年,目前已发展成为华南地区优秀的集研发设计、制造安装、销售及服务于一体的高新环保设备生产企业。通过ISO9001:2000质量体系认证、ISO14000环境体系认证、中国环境保护产品认证(CEP认证),荣获“中国环境工程行业”;“中国环保VOCS 行业催化燃烧品牌”; “VOCS催化燃烧云计算智能自动控制系统V1.0”计算机软件著作权登记证书等。

公司注册资金1000万元人民币,占地面积5000m2,主营废气环保设备,年产值5000万元,主要产品有:RCO、CO催化燃烧装置、治理废气的UV光解净化器、等离子净化器、等。

废气处理设备,工业除尘设备,工业污水处理设备
rto焚烧炉 1、VOCs处理技术 VOCs气体处理技术主要分为两类:回收和消除。表1选择具有代表性的多种处理技术在多种VOCs中的应用情况进行归纳。 2.1回收技术 2.1.1吸附技术技术 传统的吸附
rto焚烧炉_北京涂装废气rto焚烧炉 产品信息

  rto焚烧炉

rto焚烧炉
北京涂装废气rto焚烧炉

  1、VOCs处理技术

  VOCs气体处理技术主要分为两类:回收和消除。表1选择具有代表性的多种处理技术在多种VOCs中的应用情况进行归纳。

  2.1回收技术

  2.1.1吸附技术技术

  传统的吸附技术技术适用于处理绝大多数具有回收价值的VOCs气体,该类气体主要为苯系物、酮、卤代烃、醇、酯、烯烃。处理废气流量宜在2000~4000mg/m3,浓度适宜在20~2000ppm,当处理气体流量小于2000mg/m3时会使技术系统运行成本大幅度增高。

  新型变压吸附(PressureSwingAdsorption,PSA)技术在国外运行比较成熟,该工艺一般在气体压力为0.1~2.5MPa之间运行,但有些含气源无需二次加压。李立清等采用PSA技术对单相气体污染物(甲烷、氯氟烃、苯)进行回收,其处理回收率能达到99%,该研究成果可为PSA的工程运行提供参考。日本Bell公司运用PSA技术分离乙醇-水体系,将分压为44676Pa和1679Pa的水与乙醇双组分与混合气输入活性炭吸附床,在加压/常温条件下进行吸附。经次减压进行脱附富水蒸气处理,再经第二次减压进行脱附高纯度乙醇蒸气处理,最终将第二次解吸气体冷却至-20℃,即可回收98%乙醇产品,将该方技术运用至酒精发酵净化浓缩传统工艺中,可使能耗减少50%。深入研究及开发新型吸附剂是PSA技术的重点,图1为PSA工艺简易流程图。常见的吸附材料特性如表所示,其中新型材料(沸石分子筛吸附剂)因其高吸附性、无污染性而在国际上越来越受青睐。WeiL等使用粉煤灰合成高效沸石分子筛。在投加10mol/LNaOH、结晶温度140℃及结晶时间8h条件下,所合成沸石分子筛的Si/Al比为7.9,对苯气体的吸附率高达66.51%。在沸石合成中,碱度、Si/Al比、时间和温度的增加将影响苯气的吸附效果。Mukerjee等[7]将煤基活性炭吸附剂浸渍在KI3里,在全碘吸附容器LX-100中,探究正常和限制操作温度下的去污因素。结果表明,吸附处理后碘残留量小于0.5μgml-1,煤基活性炭去除稳定碘的去污因子大于1000。

  等利用质量、气体和能量平衡方程,模拟沸石分子筛对CO2的变压吸附分离系统,并利用具有沸石A和沸石A+X的模型进行发电厂烟气CO2吸收分离实验验证,数据表明,CO2/N2的分离在0°C条件下进行分离提纯可达到95%。范春辉等[9]使用由飞灰合成的沸石在不同初始pH值和反应时间下去除亚甲基蓝(MB)和Cr(III),在初始pH值为6和5时,MB和Cr(III)的吸附容量分别为8.14mg/g和6.46mg/g,在10分钟时分别达到80%和55%的总吸附容量(总反应时长为60分钟),由此推断出分布在沸石表面和内部的MB分子形成的复杂絮凝化合物有利于离子交换和络合化学效应,并能提高MB和Cr(III)的去除效率。

  2.1.2吸收技术

  在国内外,常用吸收技术处理苯系物的工业投入不高。该技术主要用于回收有价值的有机废气,处理对象为流量是3000~15000m3/h、浓度小于500mg/m3的低浓度有机污染气体,污染气体去除率可达到95~98%,但当气体体积过小时,系统运行性成本将会增高[1]。吸收技术常用的设备有可进行多次重复洗气的喷雾塔、文式洗涤塔、填室塔和板状塔。

  等用水、无苯柴油、添加MOA乳化剂的邻苯二甲酸二丁酯和DH27多肽组成复合吸收液。该复合吸收液可循环使用,循环周期为90d,在系统吸收液用量为7.5m3/h时,去除低浓度苯类有机气体的效率可超过85%。李甲亮等通过模拟吸收实验比较了不同吸收剂组合对甲苯废气的吸收效果,通过实验对比,得出4%BDO吸收液吸收。在甲苯进气流量为0.2L/min、吸收时间为30min、与水基BDO的适宜配比为1:99的实验条件下,该吸收液对甲苯废气的吸收浓度可达43.87mg/L。

  2.1.3冷凝技术

  常用冷凝技术主要用于处理浓度高且具有回收价值的有机废气,处理效率在50~85%之间。废气的浓度应大于10000mg/m3,流量不宜大于55Nm3/min,否则气体将因流量过大而对热交换面积要求增高,致使系统运行成本增加。

  冷凝器按照传热面的结构可分为:管壳式、板面式冷凝器、螺旋螺纹管换热器、卫生级双管板换热器,此外还有螺旋板式、浮头式、板壳式等结构形式,其中以螺旋螺纹管换热器。

  一般条件下,有机废气的冷凝温度大多低于冷却水温度,所以选用凝固点在-33°C、沸点106°C的乙二醇为冷媒。黄维秋等提出了油气“冷凝+吸附”回收集成技术,并利用Aspen模拟软件及实验对该技术进行了研究。使用该技术回收总油气的回收率可高达99.2%,除此之外,所排放气体尾气浓度可控制在11.2g/m3。该技术可作为关键共性技术用于各种油气排放的工艺当中。针对冷凝技术,马天琦等[18]运用软件对甲苯负荷及制冷流程进行模拟,分析得出,经预冷处理后的甲苯混合气体从5°C冷却至-35°C,甲苯气体冷凝回收率可达到90%。

  2.1.4膜处理技术

  膜处理技术应用的范围相对比较小,一般适用于处理气体流量小于3000m3/h、浓度大于10000mg/m3的高浓度VOCs气体。膜处理技术根据半透性膜的孔径大小分为MF、NF、UF、RO膜,分离过程中可采用错流过滤方式。

  在膜处理工艺中常见的有:蒸汽渗膜、气体膜处理和膜基吸收技术。膜处理技术还可用于回收加油站挥发的气体。Ohlrogge等采用GKSS膜-平板膜来回收加油站加油过程中挥发出来的有机废气。基于泵特性,平板膜的压力比和阶段切割随着压力损失的增加而增强,但这种效应随着进料流量的增加而减弱。在20毫巴的平均压力损失和体积为20%烃进料下,经膜处理后,烃滞留物HC浓度体积低至0.2~0.25%,回收率可达到99.67~99.77%。

  在天然气中,Niu等[21]通过添加具有8.2%~20%摩尔分数的CO2新原料而改良胺吸收过程的膜单元,达到去除酸组分的目的。改良后的一级膜(OSMAHRD)和TSMAHRD两级膜(TSMAHRD)处理具有不同摩尔分数(分别为0.15和0.35)的CO2/NG进料,结果表明,一级膜的每单位进料分离成本(SCPUF)低于两级膜。

  2.2消除技术

  2.2.1催化氧化技术

  常用催化氧化技术处理的气体流量为1000~50000m3/h,适宜浓度在2000~10000mg/m3之间。催化氧化技术包括三种方技术:常用热氧化技术,其又分为热力燃烧技术、间壁式、蓄热式,这三者的区别在于对热量回收的方式不同;常用催化氧化技术,催化技术的主要问题是催化剂的选择,在实际操作中可以选择适当的助催化剂,以增加催化剂的催化性能;新型光催化氧化技术,其光源多采用波长为254nm的紫外杀菌灯(UV-C)和λ介于2100~3700nm间的荧光黑发灯。

  目前,新型光催化氧化技术尚未大规模投入生产使用。赵文霞利用TiO2/ACFs复合光催化对流动态甲苯气体进行光催化降解,在紫外线条件下,对甲苯的降解率可达到70.4%。俞家玲等在实验室模拟受VOCs气体污染的大气环境,在经过纳米光催化空气净化器处理之后,苯和甲醛的解离率分别可达到91%、78.8%。

  陈江耀等运用催化与生物联用工艺进行油漆生产、加工过程中现场有机废气的处理,中试结果表明甲苯、乙苯、间/对二甲苯和邻二甲苯的初始浓度在27~52mg/m3之间,经过光催化和生物滴滤床的组合工艺处理之后,其浓度可达到0~0.91mg/m3,对VOCs的处理效率达到97.8~99%。FujimotoT等通过还原技术将Pd附着在TiO2上,在通入浓度为100~120ppmv辛烷、异辛烷、正己烷和环己烷的环形涂覆壁反应器中进行光催化试验。与纯TiO2膜相比,用1wt%钯浸渍的TiO2改善了光催化活性,在停留时间约27秒时,转化率超过90%。

  2.2.2等离子体

  新型等离子体技术在国内外的投产率不高,目前仍然处于实验研究阶段。等离子体技术适用于处理流量范围在000~50000m3/h、浓度小于500mg/m3范围的VOCs气体。

  季银炼等使用负载纳米TiO2及Cu/Pd金属离子的材料,同时通过浸渍技术对活性炭纤维(ACF)功能材料改性。研究结果表明,ACF的改性有利于甲醛净化,而负载TiO2的ACF和负载TiO2/Cu/Pd的ACF在20min净化时间内,平均净化效率分别为70.24%和61.26%。在电压50V、净化时间20min时,低温等离子协同TiO2/ACF净化,其效率高达94%,然而Cu/Pd盐类物质不利于净化甲醛。PengTW等[30]的实验研究表明,通过增强表面等离子体共振和界面的电子转移,Au–Ag–AgI耦合贵金属双金属纳米粒子的感光性和耐光性变得非常强。

  阿热依古丽等研究表明低温等离子体技术能够很好地氧化去除部分重金属如Hg0废气,其中介质阻挡放电对污染物的去除效率高于常态电晕放电。Malik等和Merbahi等的研究表明在低氧浓度和较低的输入能量情况下,沿面放电等离子体反应器具有较低的能耗和较高的能量常数KE,除此之外,沿面电晕和线筒式电晕阴极部分较容易放电电离。

  2.2.3生物技术

  常用生物技术主要用于处理流量大于17000m3/h、浓度为500~2000mg/m3的低浓度大流量有机废气,在20℃~40℃运行温度下,净化率可超90%。

  常用生物技术主要有三种形式:生物过滤、生物滴塔和生物曝气池。生物技术中,泡沫陶瓷填料比传统的陶粒填料的处理效果好;同时丝网结构载体在高负荷运行设备中的处理效果甚好。

  微生物对邻苯二甲酸酯类物质(PAEs)、苯类物质等有机污染物的降解速度很慢,主要是由于污染物中的聚合物和复合物分子能够抵抗生物降解,致使微生物所必需的酶不能靠近并破坏化合物分子内部敏感的反应键,限制了生物技术在处理这些气相污染物质方面的应用。陈东之等[34]应用生物滴滤塔,在常温挂膜运行35d后,对二氯甲烷和1,2-二氯乙烷混合气体的去除率可分别维持在80%和75%以上。采用环境友好型焦炭填料进行研究,在进气浓度为50~114mg˙m-3时,VOCs去除率可达到90%,处理废气后的填料还可作为燃料。

  Hort等使用绿色废弃物堆肥的生物过滤反应器与填充有活化材料(AC)6的吸附塔进行组合研究,该系统处理微污染的流出物(浓度在17和52μg/m3之间),检测出接近733μg/m3的浓度峰。高去除效率证明了混合系统的有效性,虽然生物过滤器的效率大大降低,但是吸附塔在整个过程维持高效率(去除效率接近99%)。Frutos等[36]的研究表明,在由固定床反应器(FBR)与填充床吸收塔连接组合成的新型反硝化生物净化器中,N2O减排性能主要受限于FBR中的低脱氮活性和再循环液体的N2O承载能力,但由于N2O不易溶于水,因此净化效果将受其限制。使用组合净化器净化合成废水(SW)和(100±1)ppmvN2O,稳态N2O去除效率为36±3%,SW总有机碳去除率为(91±1)%。同时,净化器在40min时对N2O单相气体的去除率高达92%。

  3总结与展望

  3.1总结

  用吸附技术处理单一气相污染物时去除率高,但当气相污染物成分复杂时,其去除效率会降低。而吸收技术中脱附后的废物可经氧化技术、冷凝技术处理,或者通过提纯后回收利用,但脱附设备易受到腐蚀,因此对设备的要求相对较高。在冷凝技术中,管壳式冷凝器是目前使用泛的一种换热器,在同状态和流速下,板面式冷凝器的换热系数比管壳式的大,但是换热阻力也较大。当使用膜处理技术时,需要考虑气压对膜形成的影响。催化氧化技术常用来处理无回收价值的废气,氧化处理后的气体需冷却处理,但排热不当时又会引起热污染,这是催化氧化技术不得不面对的技术处理难题。生物技术反应速率慢,过滤时需要接触面积大的设备,pH难以控制,而生物技术后续的洗涤处理以及曝气技术则易产生恶臭,但操作简单、成本低。等离子体技术的设施占地面积小、运行的成本低、使用寿命长、可通过添加催化剂来提高其反应的效率。

  3.2展望

  新型PSA技术的反应理论模型、吸附-脱附过程的传质以及传热规律等基础理论仍需不断地完善,同时还可从开发高效便利分离技术、研发新型吸附剂等方向发展[37,38],其中深入研究开发新型吸附剂是该技术的重点。吸收技术可从避免脱附产生的二次污染、研发高效且使用范围广的吸收液、解决吸收液对设备的腐蚀等几个角度进行更深层次的探究。冷凝技术可以从设计一个适用性广、低价低耗能、换热系数大、不易阻塞以及易清洗等性价比更高的冷凝器着手来拓展该技术的前景。光催化氧化技术可以从完善其反应数学模型、制备更耐冲击力、更大比表面积的催化剂载体、提高催化剂的性能等方面来进行更深层次的研究。膜处理技术的主要问题是运行费比较高、难清洗、易堵塞,而且膜处理技术对于水溶性较差的物质的去除率偏低,这些都是限制膜处理技术在废气中应用的原因。因此,如何解决这些问题是膜处理技术发展的研究方向。等离子体技术的耗能相对较大,因此如何设计一个更节能的反应器是该技术的发展方向。而生物技术则需从减少甚至消除恶臭、减少反应器的占地面积、增加其相对处理效率等方面发展。

  北京涂装废气rto焚烧炉

  1、前言

  有机废气对光化学烟雾、酸雨的形成起着非常重要的作用。为减少涂料中的VOCs,开发了水性涂料和粉末涂料,但水性涂料中仍含有一定比例的有机溶剂。为此,各国颁布了相应的法令,限制该类气体的排放,我国于1997年颁布并实施的GB16297《大气污染综合排放标准》,限定了33种污染物的排放限值,其中包括苯、甲苯、二甲苯等挥发性有机溶剂。近年来,随着人们环保意识提高,环保法规不断完善与力度不断提高,汽车生产厂在新建涂装线中需配置废气处理设备,对老的涂装线也在逐步补充废气处理装置,废气经过处理达标后才能排放。针对不同的涂装废气,不同的厂家采用了不同的方法,下面就汽车涂装废气处理技术进行初浅的分析探讨。

  根据汽车涂装生产工艺,涂装废气主要来自于喷涂、干燥过程。所排放的污染物主要为:喷漆时产生的漆雾和有机溶剂,干燥挥发时产生的有机溶剂。漆雾主要来自于空气喷涂作业中溶剂型涂料飞散的部分,其成分与所使用的涂料一致。有机溶剂主要来自于涂料使用过程中的溶剂、稀释剂,绝大部分属挥发性排放,其主要的污染物为二甲苯、苯、甲苯等。故涂装中排放的有害废气的主要发生源为喷漆室、晾干室、烘干室。

  2、汽车生产线废气处理方法

  2.1烘干过程有机废气的治理方案

  电泳、中涂、面涂烘干室排出的气体属于高温、高浓度废气,适合采用焚烧的方法进行处理。目前烘干过程常用的废气处理措施有:蓄热式热力氧化技术(RTO焚烧炉)、蓄热式催化燃烧技术(RCO)、TNV回收式热力焚烧系统

  2.1.1蓄热式热力氧化技术(RTO焚烧炉)

  蓄热式热氧化器(RegenerativeThermalOxidizer,简称RTO焚烧炉)是一种用于处理中低浓度挥发性有机废气的节能型环保装置。适用于大风量、低浓度,适用于有机废气浓度在100PPM—20000PPM之间。其操作费用低,有机废气浓度在450PPM以上时,RTO装置不需添加辅助燃料;净化率高,两床式RTO净化率能达到98%以上,三床式RTO净化率能达到99%以上,并且不产生NOX等二次污染;全自动控制、操作简单;安全性高。

  蓄热式热氧化器采用热氧化法处理中低浓度的有机废气,用陶瓷蓄热床换热器回收热量。由陶瓷蓄热床、自动控制阀、燃烧室和控制系统等组成。主要特征是:蓄热床底部的自动控制阀分别与进气总管和排气总管相连,蓄热床通过换向阀交替换向,将由燃烧室出来的高温气体热量蓄留,并预热进入蓄热床的有机废气,蓄热床采用陶瓷蓄热材料吸收、释放热量;预热到一定温度(≥760℃)的有机废气在燃烧室燃烧发生氧化反应,生成二氧化碳和水,得到净化。典型的两床式RTO焚烧炉主体结构一个燃烧室、两个陶瓷填料床和四个切换阀组成(见下图)。该装置中的蓄热式陶瓷填充床换热器可使热能得到限度的回收,热回收率大于95%;处理有机废气时不用或使用很少的燃料。

  优点:在处理大流量低浓度的有机废气时,运行成本非常低。

  缺点:较高的一次性投资,燃烧温度较高,不适合处理高浓度的有机废气,有很多运动部件,需要较多的维护工作。

  2.1.2蓄热式催化燃烧技术(RCO)

  蓄热式催化燃烧装置(RegenerativeCatalyticOxidizer简称RCO)直接应用于中高浓度(1000mg/m3—10000mg/m3)的有机废气净化。RCO处理技术特别适用于热回收率需求高的场合,也适用于同一生产线上,因产品不同,废气成分经常发生变化或废气浓度波动较大的场合。尤其适用于需要热能回收的企业或烘干线废气处理,可将能源回收用于烘干线,从而达到节约能源的目的。

  蓄热式催化燃烧治理技术是典型的气-固相反应,其实质是活性氧参与的深度氧化作用。在催化氧化过程中,催化剂表面的吸附作用使反应物分子富集于催化剂表面,催化剂降低活化能的作用加快了氧化反应的进行,提高了氧化反应的速率。在特定催化剂的作用下,有机物在较低的起燃温度下(250~300℃)发生无焰氧化燃烧,氧化分解为CO2和水。并放出大量热能。

  RCO装置主要由炉体、催化蓄热体、燃烧系统、自控系统、自动阀门等几个系统构成。在工业生产过程中,排放的有机尾气通过引风机进入设备的旋转阀,通过选转阀将进口气体和出口气体*分开。气体首先通过陶瓷材料层1预热后发生热量的储备和热交换,其温度几乎达到催化层进行催化氧化所设定的温度,这时其中部分污染物氧化分解;废气继续通过加热区(可采用电加热方式或天然气加热方式)升温,并维持在设定温度;其再进入催化层完成催化氧化反应,即反应生成CO2和H2O,并释放大量的热量,以达到预期的处理效果。经催化氧化后的气体进入陶瓷材料层2,回收热能后通过旋转阀排放到大气中,净化后排气温度仅略高于废气处理前的温度。系统连续运转、自动切换。通过旋转阀工作,所有的陶瓷填充层均完成加热、冷却、净化的循环步骤,热量得以回收。

  优点:工艺流程简单、设备紧凑、运行可靠;净化效率高,一般均可达98%以上;与RTO焚烧炉相比燃烧温度低;一次性投资低,运行费用低,其热回收效率一般均可达85%以上;整个过程无废水产生,净化过程不产生NOX等二次污染;RCO净化设备可与烘房配套使用,净化后的气体可直接回用到烘房利用,达到节能减排的目的;

  缺点:催化燃烧装置仅适用含低沸点有机成分、灰分含量低的有机废气的处理,对含油烟等粘性物质的废气处理则不宜采用,催化剂宜中毒;处理有机废气浓度在20%以下。

  2.1.3TNV回收式热力焚烧系统

  回收式热力焚烧系统(德语ThermischeNachverbrennung简称TNV)是利用燃气或燃油直接燃烧加热含有机溶剂的废气,在高温作用下,有机溶剂分子被氧化分解为CO2和水,产生的高温烟气通过配套的多级换热装置加热生产过程需要的空气或热水,充分回收利用氧化分解有机废气时产生的热能,降低整个系统的能耗。因此,TNV系统是生产过程需要大量热量时,处理含有机溶剂废气高效、理想的处理方式,对于新建涂装生产线,一般采用TNV回收式热力焚烧系统。

  TNV系统由三大部分组成:废气预热及焚烧系统、循环风供热系统、新风换热系统。该系统中的废气焚烧集中供热装置是TNV的核心部分,它由炉体、燃烧室、换热器、燃烧机及主烟道调节阀等组成。其工作过程为:用一台高压头风机将有机废气从烘干室内抽出,经过废气焚烧集中供热装置的内置换热器预热后,到达燃烧室内,然后再通过燃烧机加热,在高温下(750℃左右)将有机废气进行氧化分解,分解后的有机废气变成CO2和水。产生的高温烟气通过炉内的换热器和主烟气管道排出,排出的烟气对烘干室的循环风进行加热,为烘干室提供所需的热量。在系统末端设置新风换热装置,将系统余热进行最后回收,将烘干室补充的新风用烟气加热后送入烘干室。另外,在主烟气管道上还设置有电动调节阀,用于调节装置出口的烟气温度,最终排放的烟气温度可以控制在160℃左右。

  废气焚烧集中供热装置的特点包括:有机废气在燃烧室的逗留时间为1~2s;有机废气分解率大于99%;热回收率可达76%;燃烧器输出的调节比可达26∶1,可达40∶1。

  缺点:在处理低浓度有机废气时,运行成本较高;管式热交换器只是在连续运行时,才有较长的寿命。

  2.2喷漆室、晾干室有机废气的治理方案

  喷漆室、晾干室排出的气体为低浓度、大流量常温废气,污染物的主要组成为芳香烃、醇醚类、酯类有机溶剂。目前,国外较为成熟的方法是:先将有机废气浓缩以减少需处理的有机废气总量,先采用吸附法(活性碳或沸石作吸附剂)对低浓度常温喷漆废气进行吸附,用高温气体脱附,浓缩的废气采用催化燃烧或蓄热式热力燃烧的方法进行处理。

  2.2.1活性炭吸附

  采用蜂窝状活性炭为吸附剂,结合吸附净化、脱附再生并浓缩VOCs和催化燃烧的原理,即将大风量、低浓度的有机废气通过蜂窝状活性炭吸附以达到净化空气的目的,当活性炭吸附饱和后再用热空气脱附使活性炭得到再生,脱附出浓缩的有机物被送往催化燃烧床进行催化燃烧,有机物被氧化成无害的CO2和H20,燃烧后的热废气通过热交换器加热冷空气,热交换后降温的气体部分排放,部分用于蜂窝状活性炭的脱附再生,达到废热利用和节能的目的。整套装置由预滤器、吸附床、催化燃烧床、阻燃器、相关的风机、阀门等组成。

  活性炭吸附--脱附净化装置根据吸附和催化燃烧两个基本原理设计,采用双气路连续工作,一个催化燃烧室,两个吸附床交替使用。先将有机废气用活性炭吸附,当快达到饱和时停止吸附,然后用热气流将有机物从活性炭上脱附下来使活性炭再生;脱附下来的有机物已被浓缩(浓度较原来提高几十倍)并送往催化燃烧室催化燃烧成二氧化碳及水蒸气排出。当有机废气的浓度达到2000PPm以上时,有机废气在催化床可维持自燃,不用外加热。燃烧后的尾气一部分排入大气,大部分被送往吸附床,用于活性炭再生。这样可满足燃烧和吸附所需的热能,达到节能的目的。再生后的可进入下次吸附;在脱附时,净化操作可用另一个吸附床进行,既适合于连续操作,也适合于间断操作。

  技术性能及特点:性能稳定,结构简便,安全可靠,节能省力,无二次污染。设备占地面积小,重量轻。极适用于大风量下使用。吸附有机物废气的活性炭床,用催化燃烧后的废气进行脱附再生,脱附后的气体再送催化燃烧室进行净化,不需外部能量,节能。缺点是,活性炭使用寿命短,运行成本高。

  2.2.2、脱附净化装置

  沸石的主要成分为:硅、铝,具有吸附能力,可作为吸附剂使用;沸石转轮就是利用沸石特定孔径对于有机污染物具有吸附、脱附能力的特性,使原本具低浓度、大风量的VOC废气,经沸石转轮浓缩转换成小风量、高浓度的气体,可以降低后端终处理设备的运行成本。其装置特性适合处理大流量、低浓度、含多种有机成分的废气。缺点是前期投资高。

  沸石转轮吸附-净化装置是一种可连续进行吸附和脱附操作的气体净化装置。沸石转轮两侧由特制的密封装置分成三个区域:吸附区、解吸(再生)区及冷却区域。该系统的工作过程是:沸石转轮以较低的速度连续转动,循环通过吸附区和解吸(再生)区及冷却区域;低浓度、大风量的废气连续不断地通过转轮的吸附区时,废气中的VOC被转轮的沸石吸附,被吸附净化后的气体直接排放;轮子吸附的有机溶剂随着转轮的转动被送到解吸(再生)区,再用小风量热风连续地通过解吸区,被吸附到转轮上的VOCs在解吸区受热脱附实现再生,VOC废气随热风一起排出;转轮转至冷却区域进行冷却降温后可重新进行吸附,随着转轮的不断转动,吸附、解吸、冷却循环进行,确保废气处理持续稳定的运行。

  沸石转轮装置实质上是一个浓缩器,经过转轮处理后的含有机溶剂的废气被分成两个部分:可以直接排放的洁净空气和含高浓度有机溶剂的再生空气。可以直接排放的洁净空气,可以进入喷漆空调通风系统进行循环使用;高浓度的VOCs气体,其浓度大约为进入系统前VOCs浓度的10倍左右,浓缩后的气体再通过TNV回收式热力焚烧系统(或其他设备)进行高温焚烧处理,焚烧产生的热量分别为烘干室供热和沸石转轮脱附供热,热量被充分利用,达到节能减排的效果。

  技术性能及特点:结构简单,维护方便,使用寿命长;高吸、脱附效率,使原本高风量、低浓度的VOCs废气,转换成低风量、高浓度的废气,降低后端终处理设备的成本;沸石转轮吸附VOCs所产生的压降极低,可大大减少电力能耗;整体系统采预组及模块化设计,具备了最小的空间需求,且提供了持续性及无人化的操控模式;经过转轮浓缩后的废气,可达到国家排放标准;吸附剂使用不可燃性疏水沸石,使用更安全;缺点是一次性投资较高。

15700104732
产品对比
QQ

咨询中心

在线客服QQ交谈

市场部QQ交谈

发布询价建议反馈
回到顶部

Copyright hbzhan.comAll Rights Reserved

环保在线 - 环保行业“互联网+”服务平台

对比栏

提示

×

*您想获取产品的资料:

以上可多选,勾选其他,可自行输入要求

个人信息: