上海乾拓贸易有限公司
中级会员 | 第12年

18917038407

德国FESTO气动元件
德国宝德BURKERT
日本SMC气动元件
美国ASCO阿斯卡
英国诺冠NORGREN
德国HERION海隆
德国BUSCHJOST宝硕
德国REXROTH力士乐
德国皮尔兹PILZ
日本喜开理CKD
德国IFM易福门
德国P+F倍加福
美国VICKERS威格士/EATON
德国TURCK图尔克
意大利CAMOZZI康茂盛
德国施克SICK
日本欧姆龙OMRON
德国BALLUFF巴鲁夫
日本KANEKO金子
意大利ATOS阿托斯
美国MAC
美国BANNER邦纳
德国SCHMERSAL施迈赛
美国PARKER派克
德国SEW
意大利ODE
德国HAWE哈威
日本NACHI不二越
日本KOGANEI小金井
日本Panasonic
德国EUCHNER安士能
德国MURR穆尔
施迈茨Schmalz
罗斯蒙特Rosemount
德国SIEMENS西门子
德国HYDAC贺德克
德国MOELLER金钟穆勒
日本YUKEN油研
日本FUJI富士
法国SCHNEIDER施耐德
中国台湾AIRTAC亚德客
德国PHOENIX菲尼克斯
美国Honeywell霍尼韦尔
德国AVENTICS安沃驰
德国LEUZE劳易测
德国E+H恩德斯豪斯
美国BENTLY本特利
瑞士BAUMER/宝盟
美国SOR
日本DAIKIN大金
NORDSON诺信
美国AB罗克韦尔
德国BECKHOFF
英国BIFOLD百弗
日本THK
意大利UNIVER
丹麦DANFOSS丹弗斯
IHI黄油泵
日本IDEC和泉
德国SCHUNK雄克
SAMSON萨姆森
WAGO万可

重要介绍MAC电磁阀结构示意及工作过程

时间:2021/4/7阅读:2499
分享:

   重要介绍MAC电磁阀结构示意及工作过程
    MAC电磁阀内部流动数值模拟的控制方程组,依据数值计算要求,设定适当的边界条件,采用结构与非结构网格相结合有限体积法对控制方程组进行离散;应用CFD软件对多级套筒调节阀内部流场进行内三维湍流流动数值模拟,分别对其压力场、速度场和迹线分布进行了分析。结果表明多级套筒结构的设计能较好地改进阀内流动状况,实现压力的渐变,有效地避免汽蚀现象的发生。在设计过程中引入了CFD仿真实验,研究了多级套筒调节阀的流量特性,提高了样机试制的成功率,缩短了开发周期,降低了成本,从而为多级套筒调节阀的设计与研究提供借鉴。
    MAC电磁阀系列,它是流体运输过程和工艺环路中的重要控制元件,是确保各种工艺设备正常工作的关键设备,被广泛应用于工业及日常生活各个域中。随着技术的进步,工业实践中的各种场合都对调节阀提出了高温、高压、高压差等要求。尤其是应用于高压差条件下的调节阀,极易在阀芯及阀座部位产生严重的冲蚀和汽蚀,并伴有的振动和噪声现象。这些现象导致在高压差条件下工作的调节阀工作性能降低、使用寿命缩短,带来安全隐患,给工业域的安全高效运转带来诸多问题,甚至导致严重事故发生。因此,研发于高压差工况下的特殊调节阀意义重大。
    文中介绍了研发的多级套筒式调节阀内部结构及其工作过程。应用计算流体力学(CFD)软件对多级套筒调节阀内部流场进行内三维湍流流动数值模拟,获得调节阀内部压力、速度及迹线的分布。借助CFD仿真实验的方法,可以得到多级套筒调节阀的CV和流量特性曲线,提高样机试制的成功率,缩短开发周期,避免常规设计中,凭借经验参数或者实际试验后再修改造成的周期与成本的增加,从而为多级套筒调节阀的设计与研究提供进一步的参考。
    1 MAC电磁阀结构及工作过程
    MAC电磁阀多用于电站、石化、化工及其他高参数工况下,工作介质多为高温水或过热蒸汽。通液体时流向为从右向左,液体由套筒外侧流向内侧;通气体时流向为从左至右,气体由套筒内侧流向外侧。由于多级套筒的作用,流体在通过阀体时要经历一个多次逐级降压的过程,流体每通过一层套筒压力就会下降一次。多级套筒作为该阀的部件,可以使介质流速的增加得到抑制,将压力的变化控制在允许的范围之内,有效地避免和减轻闪蒸空化现象的发生以及高速流体对阀门部件的冲蚀,延长调节阀的使用寿命,并设备与系统的运行。
    MAC电磁阀利用Solidworks三维实体建模软件,对调节阀腔内部流道建立模型。整体模型由外部阀腔流道与内部套筒流道两部分装配组成,所建实体模型准确地反映了调节阀内部结构的实际情况。同时,为使模拟计算时流道两端的流动得以充分进行以及进出口面流动呈稳定均匀,对阀门内部流道模型进出口两端都进行了延伸,建立的流道模型如图2所示。
    MAC电磁阀阀内流道模型示意
    2.3 数值模拟计算及结果分析
    为了计算精度,采用以结构性和非结构性网格相结合的划分方法形成网格。流道两端的直管段网格采用Hex/Wedge(六面体/楔形)网格进行划分,中间多级套筒部分的流体通道因为结构比较复杂,所以采用Tet/Hybrid(四面体/混合)网格进行划分,并且为了使计算结果更加,对每一层套筒中的小孔都分别进行了加密处理。由于计算模型是对称的,因而取其50%进行模拟计算,以减少网格数目、节省计算时间;以连续性方程、三维雷诺平均N-S方程和基于各向同性涡黏性理论的k-ε方程组成调节阀内部流动数值模拟的控制方程组,采用有限体积法对控制方程组进行离散;根据厂方提供的系统运行实际工况参数,该次计算的进口处压力为7MPa,出口处压力为0,介质为常温水,密度ρ=998.2kg/m3。
    2.3.1 压力场分析
    压力分布云图如图3所示,从中可以看出:调节阀进、出口压力分布比较均匀,套筒中压力逐级稳定下降,在阀体下腔与出口直管段处有局部低压区域,如A处所示。此工况下,局部压力为7.17MPa,分布在阀门进口与外侧套筒处。
    图3 z=0水平截面上压力分布云图
    2.3.2 速度场分析
    速度分布如图4所示,入口端和阀腔内速度分布比较均匀,出口端因受套筒节流效应及阀体流道结构影响速度分布较不均匀。套筒内速度由外向内逐级上升,在7MPa压差的工况下,在内侧套筒中速度达到,如B处所示。在入口段及出口段流道拐角处出现了几处范围很小的阀门死区,此处流体静止,速度为0。
    图4 z=0水平截面上速度分布云图
    2.3.3 迹线
    阀内流体迹线分布如图5所示,迹线是单个质点在连续时间内的流动轨迹线,是拉格朗日法描述流动的一种方法,阀内流体迹线在进口处较为均匀,由套筒进入阀体下腔时分布比较集中,出口处部分由于流道结构特点流体分布较不均匀,如C处所示。

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
拨打电话
在线留言