北京鸿鸥成运仪器设备有限公司
中级会员 | 第15年

15601379746

工业物联网监控系统
蓄热型(EHT)地源热泵系统 智能交通系统方案 智能燃料测温系统 料场温度监测系统 机器声纹在机械设备健康状态监测中的应用 物联网智慧养牛系统 地热井高精度传感器分层测温方案 深井连续测温测深测压系统 地温监测系统 供暖换热站在线远程监控系统方案 地热资源监测系统/地热管理系统 高精度18B20数字温度传感器 在线多参数水质监测 NB-GPS型微功耗自动采集系统 深井救援装备 罐区线光纤光栅感温火灾探测系统 粮库温度监控系统 地源热泵温度监控系统 地热井分布式光纤测温监测系统 0-3000米深井测温仪/深水测温仪 矿井通风阻力测定系统 智慧粮库系统 土壤墒情监测系统 基于物联网水利信息化方案 基于物联网地质环境监测预警方案 油罐温度液位在线监控系统 基于物联网文物监测预警解决方案 水位远程监测系统方案 地热井远程监控系统 煤堆温度远程监控系统 机房大棚养殖温湿度监控系统 药品冰箱温湿度智能化监控系统方案 超市及营业性场所环境监测系统 温湿度记录仪 工业物联网自动化系统 防灾减灾预警信息展播系统 建筑混凝土煤堆沥青测温系统 水情自动化测报系统 地源热泵温度场监控系统 物联网水产养殖监控系统 智能温室大棚监管系统 粮仓粮情测控系统
混凝土耐久性测试仪器
公路道路桥梁桩基仪器设备
进口类系列产品
工程地质隧道坝体勘测仪器
建筑工程质量无损检测仪器
钢结构检测试验仪器设备
建筑节能测试仪器设备
交通工程检测仪器设备
室内环境,气体环保测试仪器
纺织类测试仪器
测量测绘检测仪器
工业无损检测仪器
农药试验设备及分析仪器
FLUKE系列产品
工业自动化控制系统
装配式高效机房

水文地质试验的目的及方法

时间:2020/8/16阅读:3870
分享:

抽水试验的目的任务:研究井的涌水量与水位降深的关系有其与抽水延续时间的关系;求得含水层及越流层的水文地质参数;研究降落漏斗的形状、大小及扩展过程;研究含水层之间及含水层与地表水体之间的水力;确定含水层(或含水体)边界位置及性质;进行开采或疏干的模拟,以确定井间距、开采降深、合理井径等设计井群时所需的这些参数。

 

  抽水试验的类型:稳定流抽水、非稳定流抽水;单孔、多孔及干扰井群抽水试验;完整井和非完整井抽水试验;分层、分段及混合抽水试验;  抽水试验场地布置:当地下水水力坡度小并为均质各和同性含水层时,可在垂直水流方向布置1排观测孔。若场地条件所限难于布孔时,可与流向成45度角的方向布1排观测孔;含水层仍为均质各向同性而水力坡度较大时,则增加1排平行流向的观测孔;对非均质含水层水力坡度不大的情况应布置3排观测孔;非均质各向异性的含水层,水力坡度也大时则布置4排观测孔,对各向异性的含水层应考虑平行各向异性主轴。

 

  干扰井群抽水试验观测孔的布置应控制整个流场到边界。

 

  观测孔的数目、距离及深度主要取决于试验的任务、精度要求和抽水类型。如需描述降落漏斗,则一条观测线上不应少于3个观测孔。如仅求参数,对于稳定流一线应不少于2个。对非稳定流试验,一线可取1-3个,但多数是取3个,以便使用多种言法(如S-Lgt、S-Lgr等方法)整理和解释资料。对于判定水力及边界性质的抽水试验,观测孔都不应少于2个。

 

  观测孔间间距应近主孔者小,远主孔者大,应以能观测到明显水隹下降,或下降值不少于10倍的允许观测误差。观测 孔视含水层渗透性和抽水降深而定,由数米至20米。渗透性强、降深大的应远些,这既有利于控制降落漏斗,又能避免观测 孔位紊流和三维流明显的地段,因此,有的规范规定,观测孔距主孔不小于含水层厚度的1倍。各孔间间距应保证孔间降深差大于20cm。对于非稳定流试验,观测孔的间距应在对数轴上分布均匀,而且孔间间距应比稳定流者小,以保证抽水初期观测。观测孔间间距的经验数据,可在有关手册中查得。

 

  在均质完整井中抽水时,观测孔深达抽水主孔大降深以下即可。而在非完整井中抽水时,观测孔应深达主孔抽水段之中部。沉淀管长度应不小于2m。除含水层很薄外,观测孔应深入试验层5-10m。如为查明水力,观测孔应深入试验层10-20m以上。

 

  抽水试验的技术要求:

 

  水位降低:下式抽水试验要求取得三个落程的资料,便于确定流量Q与落程S的关系(Q-S关系),以判断试验的正确性和推断涌水量。

 

  对大降深值的要求订要取决于试验的目的。当测定参数时,降深值应小些。这样可以避免紊流、三维流的产生。为地下水资源评价和疏干计算,降深值应能保证外推至设计要求。当为判断边只性质和水力时,则要求有足够的降深使问题能分暴露,通常是力求有较大的降深,因为有些层、带的隔水性能与边界两侧水头有关。

 

  稳定延续时间:系指井的渗流场达到近似稳定后的延续时间。从抽水开始至渗流场稳定所需要的时间取决于地下水类型、含水层参数、边界条件及补给条件、抽水降深值。稳定延续时间越长,愈容易发现微小而有趋势性的变化和临时性补给所造成的短暂稳定及“滞后疏干”所造成的假稳定。

 

  仅仅为了测定参数,稳定延续时间要求短些,一般不超过1日。其它的,一般为2-3日。但无论何种目的试验,远观测孔的稳定延续时间都不得少于2-4小时。  抽水孔水位波动,不超过降深的1%即为稳定。但当降深较小,则以3-5cm为限。当用空气压缩机抽水时,主孔水位波动允许达20-30cm,观测孔以不超过2-3cm为准,但不能有趋势性变化。涌水量波动不应超过抽水量的5%。

 

  水位及流量观测:抽水前需观测 天然稳定水位。一般地区每小时观测1次,2小时内所测数值不变或4小时内水位相差不超过2cm者方可作为稳定水位。如天然水位波动,则可取一个或几个周期中水位的平均值作为天然稳定水位。

 

  抽水过程中,水位、流量应同时观测。观测时应先密后疏。如开始时5-10分钟观测一次,以手则15-30分钟观测一次。观测恢复水位也是同样的。

 

  地下水动态与均衡的研究  动态均衡研究还可以用来

 

  (1)确定含水层参数、补给强度、越流因素、边界性质及水力等;

 

  (2)评价地下水资源,尤其是对大区域和一些岩溶地区的水资源评价主要是用水均衡法;

 

  (3)预报水源地的水位、调整开采方案和管理制度,拟定新水源地的管理措施及对措施未来效果的评价;

 

  (4)土壤次生盐渍化及沼泽化,矿坑涌水水源及突水,水库廻水的浸没,地下水污染进行监测与预测,以及相应防治措施的拟定和效果评价;

 

  (5)预报地震。

 

  影响地下水动态的因素  地下水动态要以定义为地下水各要素随时间变化的规律。其中包括水位,流量,流速,流向,所含成分,水温等。

 

  第1类因素包括气候、水文、生物、土壤、火山和地震等自然因素,以及多种人为因素。这类因素以自身的动态施加于地下水,引起地下水相应要素的变化。

 

  气候因素的影响遍及,时间持续长,并使浅部地下水动态也具有与其相应的纬度分带性、变化迅速和具有周期性的特点。气候因素在一定的程度上控制着水文、生物和土壤因素。水文因素的影响较局部,只限于地表水体的底部和岸边。第二类影响因素包括含水层及包气带参数,地下水的埋藏、径流条件等地质特点决定的因素。它们只影响地下水各要素普化量的大小及时间的滞后量。

 

  第三类因素包括一些特殊的水文地质条件。如岩溶区虹吸通道所造成的间歇动态,以及其它各式各样的间歇性天然喷泉等特殊动态。

 

  地下水的均衡式

 

  地下水是一个动态平衡系统,即各组成部分的数量关系满足动态平衡。它满足质量及热量守恒定律,对任何地区、在任何时间内,水、溶质、及热的流入量(或发生量)与流出量(或消失量)之差,恒等于该量储存量的变化量。

 

  某均衡区内在均衡期中总的水均衡式:

 

  μ△h+V+P=(X+Y1+Z1+W1+R1)-(Y2+Z2+W2+R2)式中:μ△h――潜水储存量的变化量;△h――水位变化量;

 

  μ――给水度或饱和不足量;X――降水量;

 

  Y1、Y2――地表水的流入和流出量;Z1、Z2凝结水量及蒸发量;

 

  W1、W2――地下径流流入和流出量;R1、R2――人工引入和排出量;

 

  V、P――地表水体及包气带水储存量的变化量。潜水的一般均衡式:

 

  μ△h+V+P=(Xf+Yf+W1+Z、1+R、1)-(W2+Ws+Z、2+R、2)式中:Xf――降水入渗量;

 

  Z、1、Z、2――潜水的凝结补给量及蒸发量;Ws――泉的溢出量;

 

  Yf――地表水对潜水的补给量;

 

  R、1、R、2――潜水的人工注入及排出量;其余符号同前。

 

  承压水的水均衡式在大多数情况下较为简单,例如:μ*△h=W1+E1-(W2+R2k)

 

  式中:μ*――弹性给水系数(贮水系数);E1――越流补给量;

 

  R2k――承压水的开采量。

 

  地下水均衡要素的测定方法

 

  确定潜水位变化值△h的方法是直接观测。

 

  测定通过河渠某过水断面流量的常用方法有堰测法、浮标法及流速仪法。

 

  地下水动态均衡研究方法

 

  地下水动态长期以,观测网的布置:动态观测网分区域性基本观测网和专门性观测网两种。

 

  1、选择不同气候带中有代表性的各种水文地质单元,设置由泉、井、孔等观测点组成的观测肉。

 

  2、以主干观测线控制各单元中的主要动态类型,按当地水文地质变化大的方向布置观测线。对次要的、有差异性的地段和特殊变化点上设辅助性观测点。也常布置垂直地表水体的观测线。

 

  3、观测肉应与均衡研究结合起来。

 

  主要技术要求

 

  常用的观测点为钻孔和泉。此外还有其它地下水、地表水或气象要素等的观测点。

 

  观测孔结构取决于含水层性质、观测层数和内容。如松散层应下过滤器,一孔观测多层则在求分层止水,孔径应保证能定置进各层测水位管。孔深应保证观测到低水位。

 

  选泉点应考虑测流方便,并能安设测流装置。有时还应建防污设施。所有观测点应有水文地质特征、观测和利用等历史资料。

 

  经常的观测项目有地下水水位,泉、自溢孔和生产井的流量,水温及水化学成分等。必要时还需观测地表水及气象要素等。

 

  观测频度取决于观测内容及要素变化快慢。通常,水位、水温、流量每5日观测1次。地表河和地下河流洪峰时期,可加密至每日两次。

 

  同一水文地抩单元力求对和点同时观测,否则应在季节代表性日期内统一观测。如区域过大,观测频度高,可免于统一观测。

 

全自动野外地温监测系统/冻土地温自动监测系统

地源热泵分布式温度集中测控系统

矿井总线分散式温度测量系统方案

矿井分散式垂直测温系统/地热普查/地温监测哪家好选鸿鸥

矿井测温系统/矿建冻结法施工温度监测系统/深井温度场地温监测系统

 

TD-016C型 地源热泵能耗监控测温系统

产品关键词:地源热泵测温,地埋管测温,浅层地温在线监测系统,分布式地温监测系统

此款系统专门为地源热泵生产企业,新能源技术安装公司,地热井钻探公司以及节能环保产业等单位设计,通过连接我司单总线地热电缆,以及单通道或多通道485接口采集器,可对接到贵司单位的软件系统。欢迎各类单位以及经销商详询!此款设备支持贴牌,具体价格按量定制。

RS485竖直地埋管地源热泵温度监测系统【产品介绍】

    地源热泵空调系统利用土壤作为埋地管换热器的热源或热汇,对建筑物进行供热和供冷.在埋地管换热器设计中,土壤的导热系数是很重要的参数.而对地温进行长期可靠的监测显得特别重要。在现场实测土壤导热系数时测试时间要足够长,测试时工况稳定后的流体进出口及不同深度的温度会影响测试结果的准确性。因此地埋测温电缆的设计显得尤其重点。较传统的测温电缆设计方法,单总线测温电缆因为接线方便、精度高且不受环境影响、性价比高等优点,目前已广泛应用于地埋管及地源热泵系统进行地温监测,因可靠性和稳定性在诸多工程中已得到了验证并取得了较好的口啤。

   采集服务器通过总线将现场与温度采集模块相连,温度采集模块通过单总线将各温度传感器采集到的数据发到总线上。每个采集模块可以连接内置1-60个温度传感器的测温电缆相连。 本方案可以对大型试验场进行温度实时监测,支持180口井或测温电缆及1500点以上的观测井温度在线监测。

RS485竖直地埋管地源热泵温度监测系统

1. 地埋管回填材料与地源热泵地下温度场的测试分析 

2. U型垂直埋管换热器管群间热干扰的研究 

3. U型管地源热泵系统性能及地下温度场的研究 

4. 地源热泵地埋管的传热性能实验研究 

5. 地源热泵地埋管换热器传热研究 

6. 埋地换热器含水层内传热的数值模拟与实验研究,埋地换热器含水层内传热的数值模拟与实验研究。

竖直地埋管地源热泵温度测量系统,主要是一套先进的基于现场总线和数字传感器技术的在线监测及分析系统。它能有对地源热泵换热井进行实时温度监测并保存数据,为优化地源热泵设计、探讨地源热泵的可持续运行具有参考价值。

二、RS485竖直地埋管地源热泵温度监测系统本系统的重要特点:

1.结构简单,一根总线可以挂接1-60根传感器,总线采用三线制,所有的传感器就灯泡一样,可以直接挂在总线上.

2.总线距离长.采用强驱动模块,普通线,可以轻松测量500米深井.

3.的深井土壤检测传感器,防护等级达到IP68,可耐压力高达5Mpa. 

4.定制的防水抗拉电缆,增强了系统的稳定性和可靠特点总结:高性价格比,根据不同的需求,比你想象的*.

针对U型管口径小的问题,本系统是传统铂电阻测温系统理想的替代品. 可应用于:

1.地埋管回填材料与地源热泵地下温度场的测试分析 

2.U型垂直埋管换热器管群间热干扰的研究 

3. U型管地源热泵系统性能及地下温度场的研究 

4. 地源热泵地埋管的传热性能实验研究 

5. 地源热泵地埋管换热器传热研究 

6. 埋地换热器含水层内传热的数值模拟与实验研究。

   本系统技术参数:支持传感器:18B20高精度深井水温数字传感器,测井深:1000米,传感器耐压能力:5Mpa ,配置设备:远距离温度采集模块+测井电缆+传感器,

RS485竖直地埋管地源热泵温度监测系统系统功能: 

1、温度在线监测 

2、 报警功能 

3、 数据存储 

4、定时保存设置

5、历史数据报表打印 

6、历史曲线查询等功能。

【技术参数】

1、温度测量范围:-10℃ ~ +100℃

2、温度精度: 正负0.5℃ (-10℃ ~ +80℃)

3、分  辨 率: 0.1℃

4、采样点数: 小于128

5、巡检周期: 小于3s(可设置)

6、传输技术: RS485、RF(射频技术)、GPRS

7、测点线长: 小于350米

8、供电方式: AC220V /内置锂电池可供电1-3 

9、工作温度: -30℃ ~ +80℃

10、工作湿度: 小于90%RH

11、电缆防护等级:IP66

使用注意事项:

防水感温电缆经测试与检测,具备一定的防水和耐水压能力,使用时,请按以下方法操作与使用:
1. 使用时,建议将感温电缆置于U形管内以方便后期维护。
若置与U形管外,请小心操作,做好电缆防护,防止在安装过程中电缆被划伤,以保持电缆的耐水压能力和使用寿命。
2. 电缆中不锈钢体为传感器所在位置,因温度为缓慢变化量,正常使用时,请等待测物热平衡后再进行测量。
3. 电缆采用三线制总线方式,红色为电源正,建议电源为3-5V DC,黑色为电源负,兰色为信号线。请严格按照此说明接线操作。
4. 系统理论上支持180个节点,实际使用应该限制在150个节点以内。
5.系统具备一定的纠错能力,但总线不能短路。
6. 系统供电,当总线距离在200米以内,则可以采用DC9V给现场模块供电,当距离在500米之内,可以采用DC12V给系统供电。

【北京鸿鸥成运仪器设备有限公司提供定制各个领域用的测温线缆产品介绍】

地源热泵空调系统利用土壤作为埋地管换热器的热源或热汇,对建筑物进行供热和供冷.在埋地管换热器设计中,土壤的导热系数是很重要的参数.而对地温进行长期可靠的监测显得特别重要。在现场实测土壤导热系数时测试时间要足够长,测试时工况稳定后的流体进出口及不同深度的温度会影响测试结果的准确性。因此地埋测温电缆的设计显得尤其重点。

   由北京鸿鸥成运仪器设备有限公司推出的地源热泵温度场测控系统,硬件采取先进的ARM技术;上位机软件使用编程语言技术设计,富有人性、直观明了;测温传感器直接封装在电缆内部,根据客户距离进行封装。目前该系统广泛应用于地源热泵地埋管、地源热泵温度场检测、地源热泵地埋换热井、地源热泵竖井及地源热泵温度场系统进行地温监测,本系统的可靠性和稳定性在诸多工程中已得到了验证并取得了较好的口啤。

地源热泵诊断中土壤温度的监测方法:
  为了实现地源热泵系统的诊断,必须首先制定保证系统正常运行的合理的标准。在系统的设计阶段,地下土壤温度的初始值是一个重要的依据参数,它也是在系统运行过程中可能产生变化的参数。如果在一个或几个空调采暖周期(一般一个空调采暖周期为1年)后,系统的取热和放热严重不平衡,则这个初始温度会有较大的变化,将会大大降低系统的运行效率。所以设计选用土壤温度变化曲线作为诊断系统是否正常的标准。
  首先对地源热泵系统所控制的建筑物进行全年动态能耗分析,即输入建筑物的条件,包括建筑的地理位置、朝向、外形尺寸、围护结构材料和房间功能等条件,计算出该区域全年供暖、制冷的负荷,我们根据该负荷,选择合适的系统配置,即地埋管数量以及必要的辅助冷热源,并动态模拟计算地源热泵植筋加固系统运行过程中土壤温度的变化情况,得到初始土壤温度标准曲线。采用满足土壤温度基本平衡要求的运行方案运行,同时系统实时监测土壤温度变化情况,即依靠埋置在地下的测温传感器监测土壤的温度,并且将测得的温度传递给地源热泵系统。

浅层地温能监测系统概况:

地源热泵空调系统利用土壤作为埋地管换热器的热源或热汇,对建筑物进行供热和供冷,在埋地管换热器设计中,土壤的导热系数是很重要的参数,而对地温进行长期可靠的监测显得特别重要。在现场实测土壤导热系数时测试时间要足够长,测试时工况稳定后的流体进出口及不同深度的温度会影响测试结果的准确性。因此地源热泵地埋测温电缆的设计显得尤其重点。较传统的地源热泵测温电缆设计方法,北京鸿鸥成运仪器设备有限公司研发的数字总线式测温电缆因为接线方便、精度高且不受环境影响、性价比高等优点,目前已广泛应用于地埋管及地源热泵系统进行地温监测,因可靠性和稳定性在诸多工程中已得到了验证并取得了较好的口啤。

   为方便研究土壤、水质等环境对空调换热井能效等方面的可靠研究或温度测量,目前地源热泵地埋管测温电缆对于地埋换热井,有口径小,深度较深等特点的测温方式,如果测量地下120米的地源热泵井,要放12路线PT100传感器。12根测温线缆若平均放置,即10米放一个探头,则所需线材要1500米,在井上需配置一个至少12通道的巡检仪,若需接入电脑进行温度实时记录,该巡检仪要有RS232或RS485功能,根据以上成本估计,这口井进行地热测温至少成本在8000元,虽然选择高精度的PT100可提高系统的测温精度,但对模拟量数据采集,提供精度的有效办法是提供仪器的AD转换器的位数,即提供巡检仪的测量精度,若能够在长距离测温的条件下进行多点测温,能够做到0.5度的精度,则是非常不容易。针对这一需求,北京鸿鸥成运仪器设备有限公司推出“数字总线式地源热泵地埋管测温电缆”及相应系统。矿井深部地温监测,地源热泵温度监测研究,地源热泵温度测量系统,浅层地热测温系统。

地源热泵数字总线测温线缆与传统测温电缆对比分析:
   传统的温度检测以热敏电阻、PT100或PT1000作为温度敏感元件,因其是模拟量,要对温度进行采集,若需较高精度,需要选择12位或以上的AD转换及信号处理电路,近距离时,其精度及可靠性受环境影响不大,但当大于30米距离传输时,宜采用三线制测方式,并需定期对温度进行校正。当进行多点采集时,需每个测温点放置一根电缆,因电阻作为模拟量及相互之间的干扰,其温度测量的准确度、系统的精度差,会受环境及时间的影响较大。模块量传感器在工作过程中都是以模拟信号的形式存在,而检测的环境往往存在电场、磁场等不确定因素,这些因素会对电信号产生较大的干扰,从而影响传感器实际的测量精度和系统的稳定性,每年需要进行校准,因而它们的使用有很大的局限性。

    北京鸿鸥成运仪器设备有限公司研发的总线式数字温度传感器,具有防水、防腐蚀、抗拉、耐磨的特性,总线式数字温度传感器采用测温芯片作为感应元件,感应元件位于传感器头部,传感器的精度和稳定性决定于美国进口测温芯片的特性及精度级别,无需校正,因数据传输采用总线方式,总线电缆或传感器外径可做得很小,直径不大于12mm,且线路长短不会对传感器精度造成任何影响。这是传统热电阻测温系统*的优势。所以数字总线式测温电缆是地源热泵地埋管管测温、地温能深井和地层温度监测理想的设备。数字总线式数据传感器本身自带12位高精度数据转换器和现场总线管理器,直接将温度数据转换成适合远距离传输的数字信号,而每个传感器本身都有唯的识别ID,所以很多传感器可以直接挂接在总线上,从而实现一根电缆检测很多温度点的功能。

地源热泵大数据监控平台建设

一、系统介绍

1、建设自动监测监测平台,可监测大楼内室内温度;热泵机组空调侧和地源侧温度、

压力、流量;系统空调侧和地源侧温度、压力、流量;热泵机组和水泵的电压、电流、功率、

电量等参数;地温场的变化等,实现热泵机组运行情况 24 小时实时监测,异常情况预

警,做到真正的无人值守。可对热泵系统的长期运行稳定性、系统对地温场的影响以及能效

比等进行综合的科学评价,为进一步示范推广与系统优化的工作提供数据指导依据。

具体测量要求如下:

1)各热泵机组实时运行情况;

2)室内温度监测数据及变化曲线;

3)室外环境温度数据及变化曲线;

4)机房内空调侧出回水温度、压力、流量等监测数据及变化曲线;

5)机房内地埋管侧出回水温度、压力、流量等监测数据及变化曲线;

6)机房内用电设备的电流、电压、功率、电能等监测数据及变化曲线;

7)地温场内不同深度的地温监测数据及变化曲线;

8)能耗综合分析、系统 COP 分析以及系统节能量的评价分析。

2、自动监测平台建成以后可以对已经安装自动监测设备的地热井实施自动监测的数据分

析展示,可实现地热井和回灌井的水位、水温、流量实施传输分析,并可实现数据异常情况预

警,做到实时监管,有地热井运行的稳定性。

1)开采水量及回水水量的流量监测及变化曲线;

2)开采水温及回水水温的温度监测及变化曲线;

3)开采井井内水位监测及变化曲线;

 

 

推荐产品如下:

地源热泵温度监控系统/地源热泵测温/多功能钻孔成像分析仪/井下电视/钻孔成像仪/地热井钻孔成像仪/井下钻孔成像仪/数字超声成像测井系统/多功能超声成像测井系统/超声成像测井系统/超声成像测井仪/成像测井系统/多功能井下超声成像测井仪/超声成象测井资料分析系统/超声成像

关键词:地热水资源动态监测系统/地热井监测系统/地热井监测/水资源监测系统/地热资源回灌远程监测系统/地热管理系统/地热资源开采远程监测系统/地热资源监测系统/地热管理远程系统/地热井自动化远程监控/地热资源开发利用监测软件系统/地热水自动化监测系统/城市供热管网无线监测系统/供暖换热站在线远程监控系统方案/换热站远程监控系统方案/干热岩温度监测/干热岩监测/干热岩发电/干热岩地温监测统/地源热泵自动控制/地源热泵温度监控系统/地源热泵温度传感器/地源热泵中央空调中温度传感器/地源热泵远程监测系统/地源热泵自控系统/地源热泵自动监控系统/节能减排自动化系统/无人值守地源热泵自控系统/地热远程监测系统

地热管理系统(geothermal management system)是为实现地热资源的可持续开发而建立的管理系统。

我司深井地热监测产品系列介绍:

1.0-1000米单点温度检测(普通表和存储表)/0-3000米单点温度检测(普通显示,只能显示温度,没有存储分析软件功能)

2.0-1000米浅层地温能监测/高精度远程地温监测系统采集器采用低功耗、携带方便;物联网NB无线传输至WEB端B/S架构网络;单总线结构,可扩展256个点;进口18B20高精度传感器,在10-85度范围内,精度在0.1-0.2

3. 4.0-10000米分布式多点深层地温监测(采用分布式光纤测温系统细分两大类:1.井筒测试 2.井壁测试

4.0-2000NB型液位/温度一体式自动监测系统(同时监测温度和液位两个参数,MAX耐温125摄氏度)

5.0-7000米全景型耐高温测温成像一体井下电视(同时监测温度和视频图片等)

6. 微功耗采集系统/遥控终端机——地热资源监测系统/地热管理系统(可在换热站同时监测温度/流量/水位/泵内温度/压力/能耗等多参数内容,可实现物联网远程监控,24小时无人值守)

有此类深井地温项目,欢迎新老客户朋友垂询!北京鸿鸥成运仪器设备有限公司

关键词:地热井分布式光纤测温监测系统/分布式光纤测温系统/深井测温仪/深水测温仪/地温监测系统/深井地温监测系统/地热井井壁分布式光纤测温方案/光纤测温系统/深孔分布式光纤温度监测系统/深井探测仪/测井仪/水位监测/水位动态监测/地下水动态监测/地热井动态监测/高温水位监测/水资源实时在线监控系统/水资源实时监控系统软件/水资源实时监控/高温液位监测/压力式高温地热地下水水位计/温泉液位测量/涌井液位测量监测/高温涌井监测水位计方案/地热井水温水位测量监测系统/地下温泉怎么监测水位/ 深井水位计/投入式液位变送器 /进口扩散硅/差压变送器/地源热泵能耗监控测温系统/地源热泵能耗监测自动管理系统/地源热泵温度远程无线监控系统/地源热泵能耗地温远程监测监控系统/建筑能耗监测系统

【地下水】洗井和采样方法对分析数据的影响

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
拨打电话
在线留言