技术文章
100t/d一体化生活污水处理设备价位
阅读:320 发布时间:2019-11-5100t/d一体化生活污水处理设备价位
小宇环保始终坚信质量是企业的生命,如果你选择小宇环保,我们将以率,高服务,高质量,来回报您。我们的设备采用集中控制,易于管理维修,提高系统可靠性、稳定性。免除您的后顾之忧。
厌氧氨氧化直接利用亚硝酸盐氧化氨,整个过程无需额外投加碳源,并且仅有部分氨氧化为亚硝酸盐. 与传统的硝化-反硝化处理氨氮废水相比,短程硝化-厌氧氨氧化技术可节省100%的碳源投加和约60%的曝气量. 厌氧氨氧化技术不仅在国外得到广泛的应用,而且现阶段国内也有许多的高氨氮废水处理工程应用该项技术,主要包括了污泥消化液、 味精生产废水、 玉米淀粉生产废水、 发酵废水等.
近年来许多研究表明,厌氧氨氧化菌具有多种底物利用的能力. 有报道显示厌氧氨氧化微生物可以利用SO42-和NH+4、 Fe3+和NH+4、 Mn4+和NH+4、 NO3-和丙酸盐、 NO3-和Fe2+等物质获得生命活动所必需的能量. 厌氧氨氧化微生物具有200多种催化酶(好氧氨氧化菌仅有50多种),多样的代谢酶系统支持其多种底物利用的能力.
零价铁(ZVI)具有较强的还原能力,在作为硝酸盐还原材料的同时,还能修复高毒性有机物污染、 重金属污染,是较为理想的水处理材料. 采用零价铁修复地下水中的硝酸盐在20世纪90年代早已被实际应用. 以零价铁作为电子供体的氧化还原反应中,NO3-首先被还原为NO2-,并继续还原为NH4+. 其中小部分的NO3-也可能被还原成N2. 零价铁还原硝酸盐反应过程中,转化1 mol NO3-需要10 mol H+,因此这种硝酸盐转化难以在酸度贫乏的体系中持续进行. 零价铁化学还原硝酸盐的主要产物为氨,易形成二次污染. 这严重制约了零价铁还原硝酸盐的技术开发与应用.
厌氧生物膜法处理工艺:
a、厌氧滤器(AF):
传统的好氧生物系统一般容积负荷在2KgCOD/(m3·d)以下,而在AF发明之前的厌氧反应器一般容积负荷也在4-5kgCOD/(m3·d)以下。但AF在处理溶解性废水时负荷可高达10-15 kgCOD/(m3·d)。因此AF的发展大大提高了城市生活废水处理的厌氧反应器的处理速率,使反应器容积大大减少。由于采用了生物固定化的技术,AF作为高速厌氧反应器,使污泥在反应器内的停留时间(SRT)极大地延长。SRT的提高可以大大缩短废水的水力停留时间(HRT),从而减少反应器容积,或在相同反应器容积时增加处理的水量。这种采用生物固定化延长SRT,并把SRT和HRT分别对待的思想推动了新一代高速厌氧反应器的发展。SRT的延长实质是维持了反应器内污泥的高浓度,在AF内,厌氧污泥的浓度可以达到10-20gVSS/L。AF内厌氧污泥的保留由两种方式完成:其一是细菌在AF内固定的填料表面(也包括反应器内壁)形成生物膜;其二是在填料之间细菌形成聚集体。高浓度厌氧污泥在反应器内的积累是AF具有高速反应性能的生物学基础,在一定的污泥比产甲烷活性下,厌氧反应器的负荷与污泥浓度成正比。同时,AF内形成的厌氧污泥较之厌氧接触工艺的污泥密度大、沉淀性能好,因而其出水中的剩余污泥不存在分离困难的问题。由于AF内可自行保留高浓度的污泥,也不需要污泥的回流。
微生物絮凝剂是从微生物体内或其分泌物提取、纯化而获得的一种安全、却能自然降解的新型水处理剂。微生物絮凝剂与普通絮凝剂相比,具有无毒、无害、无二次污染、易被微生物降解、易于固液分离、适用性广等优点,在废水脱色方面有着很好的发展与应用前景。至今发现的具有絮凝性的微生物达17个种以上,有霉菌、细菌、放线菌和酵母.其中在应用在废水脱色的微生物絮凝剂已有很多,如在青霉菌类的微生物絮凝剂处理有色废水的应用比较广泛,不少研究者对此做了研究,都取得了很好的效果,在废水脱色方面有着很好的利用前景。金朝辉等从印染废水污染的土壤中筛选出对偶氮、蒽醌、三醛甲烷染料均有很好的脱色效果的优势菌株,青霉菌属ⅠⅡ和头孢霉菌属Ⅲ,3株菌对环境条件和pH值的适应范围较广,对实际印染废水进行处理,均有很好的效果。张书军等研究了染料吸附菌(青霉菌BX1)的生长条件及其对活性艳蓝KN-R的吸附特性,菌体吸附水中的100mg/L的活性艳蓝KN-R,脱色率达93.17%。林晓华等采用海藻酸钙和卡拉胶两种材料对青霉菌X5进行固定化,对活性艳蓝KN-R进行脱色处理,在佳条件脱色效率达到97%以上。董新娇等利用植物载体玉米芯对一株染料脱色青霉菌X5进行固定化,在有条件下,对活性艳蓝KN-R的脱色率在95%以上。
生物膜法污水处理:
生活污水的有机污染物主要包括:蛋白质(40%-60%),碳水化合物(25%-50%)和油脂(10%),此外还含有一定量的尿素。生物膜法依靠固定于载体表面上的微生物膜来降解有机物,由于微生物细胞几乎能在水环境中的任何适宜的载体表面牢固地附着、生长和繁殖,由细胞内向外伸展的胞外多聚物使微生物细胞形成纤维状的缠结结构,因此生物膜通常具有孔状结构,并具有很强的吸附性能。生物膜附着在载体的表面,是高度亲水的物质,在污水不断流动的条件下,其外侧总是存在着一层附着水层。生物膜又是微生物高度密集的物质,在膜的表面上和内部生长繁殖着大量的微生物及微型动物,形成由有机污染物 →细菌→原生动物(后生动物)组成的食物链。生物膜是由细菌、真菌、藻类、原生动物、后生动物和其他一些肉眼可见的生物群落组成。其中细菌一般有:假单苞菌属、芽苞菌属、产碱杆菌属和动胶菌属以及球衣菌属,原生动物多为钟虫、独缩虫、等枝虫、盖纤虫等。后生动物只有在溶解氧非常充足的条件下才出现,且主要为线虫。污水在流过载体表面时,污水中的有机污染物被生物膜中的微生物吸附,并通过氧向生物膜内部扩散,在膜中发生生物氧化等作用,从而完成对有机物的降解。生物膜表层生长的是好氧和兼氧微生物,而在生物膜的内层微生物则往往处于厌氧状态,当生物膜逐渐增厚,厌氧层的厚度超过好氧层时,会导致生物膜的脱落,而新的生物膜又会在载体表面重新生成,通过生物膜的周期更新,以维持生物膜反应器的正常运行。
微生物的絮凝作用报道早始于法国学者Pasteur(1876年),他发现并报道了酵母菌在发酵后期具有絮凝能力,此后,根据对微生物絮凝剂成分、组成的研究,国内外研究者总结出了多种絮凝机理,但被普遍接受的机理主要有吸附架桥机理、电中和机理、化学反应学说、卷捕作用、酯合假说、粘质学说等。也有些专家认为,絮凝过程复杂多变,单一的机理很难概括所有现象,吸附机理并非单一的。罗平等的研究表明,微生物的絮凝机理是在氢键作用下的“吸附架桥”机理模式;朱艳彬等的研究表明,微生物絮凝机理是两性电解质的电中和作用及代谢残留物吸附架桥作用的共同结果;马放等研究发现,在不同的水质条件下,电中和、吸附架桥和网捕卷扫3种模式可相互协同。
微生物絮凝剂的絮凝能力取决于自身的分子结构、形状、分子质量和所带基团。一般情况下,絮凝剂直线型分子结构较好,比交联的或支链结构的絮凝剂絮凝效果好。此外絮凝剂分子质量越大,絮凝活性越高。同时,絮凝剂的添加量、絮凝环境(如温度、pH值、金属离子和浓度、通气量等)是影响絮凝效果的主要因素。HeJ等的报道指出,通过对深海细菌V3a’所产生的微生物絮凝剂HBF-3絮凝机理研究表明,HBF-3对高岭土絮凝主要是由于Ca2+的架桥作用。
生物化学法:生物化学法指通过微生物处理含重金属废水,将可溶性离子转化为不溶性化合物而去除。硫酸盐生物还原法是一种典型生物化学法,该法是在厌氧条件下硫酸盐还原菌通过异化的硫酸盐还原作用,将硫酸盐还原成H2S,重金属离子和H2S反应生成溶解度很低的金属硫化物沉淀而被去除,同时H:S04的还原作用可将S02—4转化为S2—而使废水的pH值升高,从而形成重金属的氢氧化物而沉淀。中国科学院成都生物研究所从电镀污泥、废水及下水道铁管内分离筛选出35株菌株,从中获得净化Cr(VI)复合功能菌。
2、厌氧生物膜法处理工艺在生活污水处理中的应用:
(1)、高分子有机物的厌氧降解阶段:
在废水的厌氧处理过程中,废水中的有机物经大量微生物的共同作用,被终转化为甲烷、二氧化碳、水、硫化氢和氨,高分子有机物的厌氧降解过程可以被分为四个阶段。
水解阶段:高分子有机物因相对分子质量巨大,不能透过细胞膜,因此不可能为细菌直接利用。因此它们在阶段被细菌胞外酶分解为小分子。例如纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被*分解为麦芽糖和葡萄糖,蛋白质被蛋白酶水解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。
发酵(或酸化)阶段:在这一阶段,上述小分子的化合物在发酵细菌(即酸化菌)的细胞内转化为更为简单的化合物并分泌到细胞外。这一阶段的主要产物有挥发性脂肪酸(简写作VFA)、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等。与此同时,酸化菌也利用部分物质合成新的细胞物质,因此未酸化废水厌氧处理时产生更多的剩余污泥。
活性艳蓝是一种高活性染料,染色深且牢固,一般絮凝剂对其脱色效率不高,一些研究者根据其特点筛选出许多对活性艳蓝KN-R具有良好去除效率的微生物絮凝剂。宋文华等分离到的两株蒽醌染料脱色优势菌ND1,ND2,在适条件下,ND1对活性艳蓝KN-R的去除率分别能达到100%;ND2对对活性艳蓝KN-R去除率达到90%。辛平等筛选出对蒽醌染料具有广谱吸附脱色作用的菌株GX2,在碳源浓度大于2.5mg/L时,对浓度为120mg/L的KN-R能*脱色。肖继波研究了吸附菌HX5对活性艳蓝KN-R的吸附脱色作用,碳源浓度在10g/L左右,氮源浓度在0.75g/L时,效果较佳,可使200mg/L的活性艳蓝KN-R*脱色。一些复杂的活性染料,微生物絮凝剂都可以表现出良好的去除效果。
在AF内,由于填料是固定的,废水进入反应器内,逐渐被细菌水解酸化、转化为乙酸和甲烷,废水组成在不同反应器高度逐渐变化。因此微生物种群的分布也呈现规律性。在底部(进水处),发酵菌和产酸菌占有大的比重,随反应器高度上升,产乙酸菌和产甲烷菌逐渐增多并占主导地位。细菌的种类与废水的成分有关,在已酸化的废水中,发酵与产酸菌不会有太大的浓度。细菌在反应器内分布的另一特征是反应器进水处(例如上流式AF的内部)细菌由于得到营养多因而污泥浓度高,污泥的浓度随高度迅速减少。污泥的这种分布特征赋予AF一些工艺上的特点。首先,AF内废水中有机物的去除主要在AF底部进行(指上流式AF),AF反应器在1m以上COD的去除率几乎不再增加,而大部分COD是在0.3m以内去除的。因此在一定的容积负荷下,浅的AF反应器比深的反应器能有更好的处理效率。其次,由于反应器底部污泥浓度特别大,因此容易引起反应器的堵塞。堵塞问题是影响AF应用的主要问题之一。据报道,上流式AF底部污泥浓度可高达60g/L。厌氧污泥在AF内的有规律分布还使得反应器对有毒物质的适应能力较强,可以生物降解的毒性物质在反应器内的浓度也呈现出规律性的变化,加之厌氧生物膜形成各种菌群的良好共生体系,因此在AF内易于培养出适应有毒物质的厌氧污泥。例如在处理和甲醛废水中,发现AF反应器内的污泥产生了良好的适应性,这些有毒物质的去除效果和允许的进液浓度逐渐上升。AF同时也具有较大的抗冲击负荷能力。一般认为在相同的温度条件下,AF的负荷可高出厌氧接触工艺2~3倍,同时会有较高的COD去除率。
AF在应用上的问题除了堵塞和由局部堵塞引起的沟流以外,另一个问题是它需要大量的填料,填料的使用使其成本上升。由于以上问题,国外生产规模的AF系统应用也不是很多。
作为升流式厌氧滤池的革新技术——厌氧膜床,采用较大颗粒及孔隙率的填料代替传统的小粒径填料,有效地解决了反应器的堵塞问题。厌氧膜床具有如下特点:
·有效克服了厌氧滤池易堵塞和出水水质差的缺点;
·生物固体浓度高,因此可获得较高的有机负荷;
·在厌氧膜床内微生物通过附着在填料表面形成生物膜,以及悬浮于填料孔隙间形成细菌聚集体,因此在厌氧膜床内可以保持较高的生物量。因此可缩短水力停留时间,耐冲击负荷能力较强;
·启动时间短,停止运行后再启动也较容易;
·不需要回流污泥,运行管理方便;
·在水量和负荷有较大变化的情况下,耐冲击性较好。