污水处理设备 污泥处理设备 水处理过滤器 软化水设备/除盐设备 纯净水设备 消毒设备|加药设备 供水/储水/集水/排水/辅助 水处理膜 过滤器滤芯 水处理滤料 水处理剂 水处理填料 其它水处理设备
成都鸿之海水利设备有限公司
成都成华铸铁镶铜闸门/ 铸铁闸门 诚信赢天下 质量树丰碑本公司专业的生产生产销售:四川不锈钢闸门 、四川304不锈钢渠道闸门、
成都钢闸门、成都钢坝闸门、{成都铸铁闸门}、{成都不锈钢闸门}、{成都铸铁镶铜闸门},{成都平面闸门}、{成都弧形闸门},{成都拱形闸门},{成都机闸一体式闸门},{成都双向止水闸门} ,{成都液压闸门},{成都插板闸门},{成都叠梁闸门}等各种形状、材质的水工闸门产品
成都成华铸铁镶铜闸门/ 铸铁闸门 产品特点:
该设备的大优点是自动化程度高、分离效率高、动力消耗小、无噪音、耐腐蚀性能好,在无人看管的情况下可连续工作,设置了过载保护装置,在设备发生故障时,会产生声光并自动停机,可以避免设备超负荷工作。
本设备可以根据用户需要任意调节设备运行间隔,实现周期性运转;可以根据格栅前后液位差自动控制;并且有手动控制功能,以方便检修。用户可根据不同的工作需要任意选用。
由于该设备结构设计合理,在设备工作时, 自身具有很强的自净能力,不会发生堵塞现象,所以日常工作量很少。
成都成华铸铁镶铜闸门/ 铸铁闸门 技术参数及选型:
1、设备和耙齿规格:
设备规格按机宽尺寸分HF300-3600型。机宽超过1800mm,则做成并联机。栅隙分为1mm、3mm、5mm、10mm、20mm、30mm、40mm、50mm等各种规格,由过水量、高度、固液分离总量和所分离的形状、颗粒大小来选择栅隙。可根据用户需要选用材质为ABS工程塑料、尼龙、不锈钢的耙齿制作;主体框架有不锈钢材质和碳钢防腐两种。
2、设备长短规格:
设备沟深为1500mm,可根据用户需要及使用实际情况宽、。
成都成华铸铁镶铜闸门/ 铸铁闸门 日常注意事项
1、链条:链条初期磨损产生,运转30天左右检查其松劲度并按以下进行:
①确认链条和链轮的平行度。
②检验链条的松紧程度。
在两轴中间部位以按住链条,测定其松紧度。如果按不出量,则链条太紧,如量超过20mm,则链条太松。
:松开减速机的紧固螺栓,纵向减速机来链条的松紧度到状态,同时确认两链轮平行后再固定减速机的紧固螺栓。
2、加油:如减速电机Y系列380V自冷防水电机,功率为120W,次使用100小时左右要用油往减速机注油口内加入10克50号机油,以后每使用一年必须拆检清洗一次,安装时也要加入50号机油。
3、*不用时:*不用时每隔一周运转1~2次,每次5分钟。
产品规格
参数尺寸 | HF-300 | HF-500 | HF-800 | HF-1000 | HF-1200 |
安装角度 | 60°~75° | 60°~75° | 60°~75° | 60°~75° | 60°~75° |
耙齿节距(mm) | 100 | 100 | 100 | 100 | 100 |
电机功率(k) | 0.75 | 0.75 | 1.1 | 1.5 | 2.2 |
过水流量(T/h) | 405 | 1125 | 3600 | 4500 | 6300 |
流量(m/s) | > 0.3 | > 0.5 | > 1 | > 1 | > 1 |
有效宽度k1(mm) | 300 | 500 | 800 | 1000 | 12000 |
水槽宽度k3(mm) | 550 | 750 | 1050 | 1250 | 1450 |
设备总宽k4(mm) | 880 | 1080 | 1380 | 1580 | 1780 |
水槽深度H(mm) | 1000~8000 | 1000~8000 | 1000~8000 | 1000~8000 | 1000~8000 |
邦科水利公司本着“以求生存,以信誉求发展"的奋斗目标,广招科研技术人才,并先后与多个大学强强联合,积极创新并研发了工业废水(造纸、印染、化工、皮革、油田、生活污水)的全套处理设备及工艺技术,公司坚持以高技技术服务于客户,以优质的产品赢得用户的信赖。面对竞争激烈的市场,公司一贯坚持“优质,用户*"的经营理念,建立了一套完善的服务体系,在售前、售中、售后各个环节推行规范化和化服务,力求制造优质的产品服务于广大客户。
成都成华铸铁镶铜闸门/ 铸铁闸门 闸门情况山西省晋中市祁县子洪水库输水洞出口闸门为弧形钢闸门,孔口尺寸4.0 m×4.15 m(宽×高),正常工作水头28 m,大工作水头35.6 m。从1974年投入运行至均以局部开启运行。1985年水库上游来水量较大,当水头升至32.45 m时,开启弧门泄水,闸门开启高度0.7 m,水量41.9 m3/s。这次运行从9月15日21时至9月21日7时,历时5.5 d。当闸门水头为31.52 m时,关闭弧门1次,3 h后,又开启弧门泄水,开启高度仍为0.7 m,当水库水位下降到闸门水头26.54 m时,开始关闭闸门,关至距底槛0.42 m时,闸门被卡阻不能继续下降,此时闸门已严重。经实测,发现门叶、支臂等构件都有不同程度的变形。门叶部分,下主梁翼缘板上部整个门叶向下游凹陷,致使门叶顶部向上游偏斜,底部向下游偏斜。底部大偏离在闸门左侧,偏差值139 mm,面板大凹陷深度 111 mm,3 根纵梁下关于闸门振动的研究工作,国外早在30年代就已开始,我国自50年代以来也取得了一定的进展。但是,由于影响闸门振动的因素很多,特别是闸门在水中的振动属流体弹性理论范畴,国内在这方面的理论研究成果尚不多,模型试验因模型律存在问题,还不能完整地重演原型中的振动现象,原型观测又常受外界条件的,也难于从各个观测资料中概括出的规律性。因此,可以说我国关于闸门振动的研究尚处于阶段,尚无一套成熟的理论和计算可供设计参改。本文拟对国内的研究现状作概略的介绍和评述,以期推动这一工作的深入开展。一、已取得的若干研究成果 (一)原型现测 国内已有30多项工程的闸门作过振动原型珑侧。现选择其中较为典型的实例列于表1。 关于闸门振动危害程度的判别,文献〔4〕*Pa州kat的。Patrikat认为振动的危害程度取决于振幅与的综合效应。他在对数座标上将危害程度划分为、合理、可以采用、稍不、不和很不等6个区域,并给闸门埋件安装的中经常采用的工艺有两种,一种是二期混凝土浇筑,一种是一期混凝土浇筑以此成型,本文将对两种施工工艺进行具体的阐述,二者在很多方面既有着相同点,又有着不同点,在工艺选择时要根据具体情况进行选择。希望本文能够给埋安装人员提供一定的建议。1二期混凝土浇筑工艺这项工艺主要是指在对闸底板和闸墩进行混凝土浇筑时,在适当的位置预先混凝土的位置,在埋件安装完毕以后再进行二期混凝土的浇筑的施工。很多闸门埋件安装的设计图纸中都会采用这种,也就是在一起混凝土施工当中先为埋件预留出其位置,然后再通过锚板来对埋件进行位置的固定。1.1底坎安装。在一起浇筑的模板上要采用仪对孔心线和底坎的横向种中心线进行准确的测量,在底板混凝土中要进行一定的处理,同时对底坎高程的中心线要进行严格的控制,在控制中要水准仪经过了严密的校正,对相关的数据要采用刚吃进行测量,每隔一定的距离就测量一个点。安装开始之前要依据底坎底端位置的高程弧形闸门已广泛用于水利水电工程,虽大部运行良好,但仍有不少弧形闸门在运行中发生强烈振动,有的甚至失事造成巨大损失.因而,弧门的振动问题己引起广泛的关注.以往闸门结构设计主要考虑静力强度问题,并简化为平面问题进行计算,动力问题则很少考虑. 弧门结构的总体布置主要由弧面半径凡及门高H来控制.规范〔'」指出R/H应为 平水式R/H一1.1一1.5,(1) 深水式R/H~1.5一2.5.(2)而面板梁格与支臂的单位刚度也应保持一定的比例.实复式主梁与支臂的单位刚度比K应为 K一,Jl兀2/J:毛,一4一1 0.(3)式中,J:,JZ与L:,LZ分别表示主梁与支臂的截面惯矩及计算长度.因此,弧门结构的启闭杆,面板梁格系及支臂的刚度比例应L'〕 J杆J支臂标*.(4)文献〔','〕已提出某些修正意见.根据以上原则设计的弧形闸门,从静力强度、变位以及启闭力等方面考虑可能是经济合理的,但动力方面则存在明显的缺点.前言 太平湾水电站位于鸭绿江下游,系两国合作的电站。水电站采用河床式厂房,安装4台单机为4.75万俪的机组,单机引用流量较大,为455m"启,一台机组设3个进水孔,每孔设一扇事故闸门,孔口尺寸为6丫13 .3m,设计水头22 .lm。为了启门力,启闭机容量,闸门采用节间充水平压,利用门顶水柱加重,动水关闭。 在水电站进口采用节间充水平压并利用门顶水柱下门的闸门布置属于新技术,1985年12月太平湾电站台机组发电前该闸门正式投入使用。为了给电站运行提供可靠的技术数据,验证闸门运行的可靠性,1987年6月15一17日对该电站2#机中孔门进行了原型动水关闭试验。试验内容包括闸门动水关闭时的持住力与闸门开度的关系,动水关闭时门顶水柱压力与闸门开度的关系,上节门的动水启门力,整扇门的静水启门力及闸门启闭中通气孔的风速等。 二、动水关门试验 太平湾电站进口事故闸门的启闭力试验,主要采用应变测力进行观测0引言对于洞弧形工作闸门而言,运行时的振动对于水闸运行的性起着关键作用。弧形闸门的结构参数,如分布、结构刚度和材料属性等决定了闸门的自振。当前在闸门的动力分析领域所进行的研究大部分集中在闸门的自振与计算,对闸门的自振与水流等外部作的激励进行比较。外力的激励接近闸门结构的自振时,振幅将逐渐增大,闸门发生共振,这将使闸门整体或局部发生强烈振动,在闸门结构内出现不平常的应力和应变,使闸门受到损害[1]。当前对于弧形闸门自振特性分析主要有三种,现场试验、模型试验和数学模型分析[2],现场试验受到闸门实际工作条件的种种,因而比较难以实现。而对闸门这样复杂的空间结构而言,其模型制作周期偏长,试验代价偏高,且模型试验的相似准则也较难以。得利于计算机技术的飞速发展,有限单元法等纯数值计算变的更加便捷,在闸门的动特性计算中了充分发挥。闸门的空间结构,边界的约束条件,以及与周围水环
您感兴趣的产品PRODUCTS YOU ARE INTERESTED IN
环保在线 设计制作,未经允许翻录必究 .
请输入账号
请输入密码
请输验证码
请输入你感兴趣的产品
请简单描述您的需求
请选择省份