污水处理设备 污泥处理设备 水处理过滤器 软化水设备/除盐设备 纯净水设备 消毒设备|加药设备 供水/储水/集水/排水/辅助 水处理膜 过滤器滤芯 水处理滤料 水处理剂 水处理填料 其它水处理设备
成都鸿之海水利设备有限公司
大理云龙渠道闸门 /水利闸门 厂家 诚信赢天下 质量树丰碑本公司专业的生产生产销售:四川不锈钢闸门 、四川304不锈钢渠道闸门、
成都钢闸门、成都钢坝闸门、{成都铸铁闸门}、{成都不锈钢闸门}、{成都铸铁镶铜闸门},{成都平面闸门}、{成都弧形闸门},{成都拱形闸门},{成都机闸一体式闸门},{成都双向止水闸门} ,{成都液压闸门},{成都插板闸门},{成都叠梁闸门}等各种形状、材质的水工闸门
大理云龙渠道闸门 /水利闸门 厂家 机械格栅结构及工作原理
该环保设备主要由驱动机构、机架、传动机构、齿耙链牵引机构、撒渣机构、电气控制等构成。由过水量、高度、固液分离总量和所分离的形状、颗粒大小来选择栅隙。可根据用户需要选用材质为ABS工程塑料、尼龙、不锈钢的耙齿;主体框架有不锈钢材质和碳钢防腐两种。
(1) 格栅本体为整体式结构,在平台上组装、调试,空机试运行8小时方可出厂,确保组装,也可简化现场安装工作量。
(6)本机设电器过载保护装置,当机械发生故障或超负荷时会自动停机并发出,该灵敏可靠。
(3) 链条采用的宽链板不锈钢链条,链条的系数不小于6,并设有链轮张紧调节装置。在链槽中运转时,不需其他阻渣装置,即可有效防止栅渣缠入链槽,避免卡阻现象。
(5) 除污耙齿采用两种形式,一种为长耙,另一种为短耙。长耙捞渣量大,短耙捞耙干净*。
(2) 本机在主栅条前加上一道活动的副栅,活动副栅的间距与主栅条*,活动副栅的栅渣由长耙齿捞取,有效防止污水中的栅渣从栅条底部串过和底部的污物的积滞。
1、主要结构
格栅机为根本,以完善的售后服务体系为保障作为不懈追求的目标,永做环保事业道路上的先锋兵。为造福一个白云、蓝天、绿色、环保的尽一份力量!
机械格栅(格栅除污机)是一种可以连续自动流体中各种形状的杂物,以固液分离为目的装置,它可以作为一种设备广泛地应用于城市污水处理、自来水行业、电厂进水口,同时也可以作为纺织、食品加工、造纸、皮革等行业生产工艺中*的设备,回转式机械格栅又称格栅除污机。
GDGS型机械格栅除污机(拦污机)是一种可以连续自动拦截并流体中各种形状杂物的水处理设备,是以固液分离为目的装置,广泛地应用于城市污水处理。自来水行业、电厂进水口,同时也可以作为各行业废水处理工艺中的前级筛分设备。该机械格栅产品已于1996和1999年两次通过了环保总局的产品认定。
(4) 传动机构安装于机架顶部,采用摆线针轮减速机,设过扭矩保护装置(剪切销),有效防止因超负荷对电机减速机造成损伤。并配置防护罩,拆装方便。
大理云龙渠道闸门 /水利闸门 厂家 该机有栅齿、栅齿轴、链板等组成栅网,以替代格栅的栅条。栅网在机架内作回转运动,从而将污水中的悬浮物拦截并不断分离水中的悬浮物,因而工作效率高、运行平稳、格栅前后水位差小,并且不易堵塞。该机适合于作粗细格栅使用。栅网中的栅齿可用工程塑料或不锈钢两种材料制造,栅齿轴和链板等由不锈钢制造,大大了格栅整体的耐腐蚀性能。较小间隙的格栅一般宜用不锈钢栅齿。设备运行使耙齿把截留在栅面上的杂物自下而上带至出渣口,当耙齿自上向下转向运动时,杂物依靠重力自行脱落,从卸料落入输送机或小车内,然后外运或作进一步的处理。
大理云龙渠道闸门 /水利闸门 厂家 双拱型空间钢管结构闸门是应用大跨度空间结构设计理念提出的一种新型闸门,其承重结构是由模拟鱼体构造为适应闸门双向荷载特点设计的双拱钢管桁架组成。每榀双拱钢管桁架包括正拱、反拱、腹杆杆等构件,多榀双拱钢管桁架由横向桁架连接就构成了双拱型空间钢管结构闸门。相对于实腹梁格结构闸门而言,双拱型空间钢管结构闸门构件主要承受轴向应力,刚度大。在相同条件下,采用这种结构型式的闸门比实腹梁格闸门节省大量的用钢量。本文就对这种闸门进行了分析理论和试验的研究,首先对双拱钢管桁架结构的渊源进行了探讨,提出了双拱型空间钢管结构闸门的概念。并和的实腹梁格闸门进行比较,发现双拱型空间钢管结构闸门构件主要以承受轴向应力为主。介绍了双拱型空间钢管结构闸门在"河口大闸"曹娥江挡潮闸门中的应用,曹娥江大闸闸门将承受巨大的钱塘江涌潮荷载,双拱型空间钢管结构闸门在这里显示出较大的优势,相对于的实腹梁格型式闸门节省了30%左右的用钢量。1概述三期工程1A标采用翻模工艺施工的部位主要有右岸大坝3号排漂孔孔口、5~7号排沙孔孔口及右厂21~26号钢管坝段的6个电站进水口。以上孔口部位均属高速水流区,具有结构体型变化及过流面成型要求高、混凝土表面不能有气泡等缺陷的共性。下面仅对三期工程1A标电站进水口渐变段底拱反弧部位所使用的翻模施工工艺作一介绍,以供其他水电工程相似结构部位混凝土施工借鉴。2进水口结构特点及体型控制要求1A标段在右厂21~26号的钢管坝段各布置1个电站进水口,共计有6个孔。孔口上游起始桩号为20+000.0 m,在20+025.0 m桩号与引水压力钢管衔接,主要由检修门槽、引水孔道喇叭口、工作门槽、取水口渐变段、引水压力管道坝内埋管段等部分组成。进水口渐变段上游底部高程108.00 m,顶部高程120.80 m;下游底部高程107.394 m,顶部高程119.773 m;渐变段洞轴线长15 m,倾斜3.5°。孔口过流面不允许有起跌坎引言弧形闸门振动是一种流激振动。由于闸门结构、边界条件复杂、承压水头高,因此振动机理非常复杂。当闸门开启泄流时,受闸门周围边界条件影响,水流作用于闸门产生脉动压力,当其主与闸门自振接近时,就会激发共振。但是由于闸门边界条件复杂,水流的脉动压力不能很好地确定,主要通过现场及模型试验测定。根据对29扇闸门的统计[1],有93%的闸门其水流脉动主在1~20 Hz范围内变化,其中有48.3%在1~10 Hz之内,超过20 Hz的很少。在进行闸门动力分析时,许多工作是计算闸门的自振,并与水流的脉动相比较,以此为依据采用合理的闸门结构,使闸门的自振远离水流的脉动主频区,减小闸门振动。当闸门振动时,附近流场将产生流体惯、阻尼力、弹,并反作用于闸门,使得结构的、阻尼、刚度发生变化,从而结构振动特性发生变化。其中结构振动引起流场变化而产生的对结构反作用的流体力(附加惯)对结构振动特性有很大的影响。偏心铰弧形闸门主要是用于高水头的新型闸门,由于技术难度大,可借鉴的分析资料很少,设计人员在对其进行结构设计和分析计算时会遇到许多难题。闸门设计的主要是将各构件简化成平面杆件,采用结构力学计算,但这种不能反映出闸门的空间整体工作性能。本文基于大型通用ANSYS,结合实际工程九甸峡偏心铰弧形闸门所涉及的关键问题,分析了偏心铰弧形闸门的受力特点和工作,建立了三维结构模型,并对弧形闸门进行静、动力分析和设计研究。具容如下:1.研究选择了基于ANSYS的能反映闸门各构件真实工作状态的单元,根据偏心铰弧形闸门的受力特点和工作,提出了偏心铰弧形闸门的三维结构有限元模型。2.介绍了动力有限元的基本理论方程,根据结构和水体动力相互作用的原理,建立了水体和闸门耦合作用求解方程,研究了ANSYS的二次技术,利用ANSYS参数化设计语言(APDL)编制了基于ANSYS的动水压力附加求解程序。
您感兴趣的产品PRODUCTS YOU ARE INTERESTED IN
环保在线 设计制作,未经允许翻录必究 .
请输入账号
请输入密码
请输验证码
请输入你感兴趣的产品
请简单描述您的需求
请选择省份