潍坊鲁盛水处理设备有限公司

当前位置:潍坊鲁盛水处理设备有限公司>>农村生活污水处理设备>> 乡镇生活污水处理一体化系统

乡镇生活污水处理一体化系统

参  考  价:面议
具体成交价以合同协议为准

产品型号

品牌其他品牌

厂商性质生产商

所在地潍坊市

更新时间:2018-09-30 17:04:10浏览次数:270次

联系我时,请告知来自 环保在线
出水管口径 不等mm 处理量 60m³/h
额定电压 220v 额定功率 360kw
进水管口径 不等mm 空气量 不等m³/min
流量计规格 不等m³/h
乡镇生活污水处理一体化系统,微生物将污水中的污染物质转化为微生物细胞及CO2、H2O、H2S、N2、CH4等多种物质,溶解氧和污水中的有机物凭借扩散作用,为微生物所利用。当生物膜达到一定厚度时,氧已经无法向生物膜内层扩散。好氧菌死亡脱落,而兼性菌、厌氧菌在内层开始繁殖,形成厌氧层,利用死亡的好氧菌为基质,并在此基础上不断发展厌氧菌。

乡镇生活污水处理一体化系统

只有对自己的人生充满自信,才能在自信里找到自强,自强中彰显自立,自立成就自我,才会在自我中不断演绎人生的精彩。


现货、专车送上门、安装人员本地出发、搞售后更方便。
我们是专业搞污水处理的、技术、经验都是经得住考验的。
公司从事生活污水、医疗污水、屠宰污水及类似的各种生产污水,出水可达到国家要求的排放标准。
除无机物
有三种可采用的方法:即离子交换、电渗析和反渗透。在污水三级处理中用反渗透法脱除矿物质和有机污染物受重视。使用高效除盐膜反渗透装置的结果证明,总溶解性固体可去除90~95%,磷酸盐可去除95~99%,氨氮可去除80~90%,硝酸盐氮可去除50~85%,悬浮物可去除99~*,总有机碳可去除90~95%。可见,反渗透法能有效地去除多种污染物。缺点是设备造价和运转费用都高。另外,反渗透膜容易被污染物堵塞,需要清洗。有些三级处理系统是由超过滤和反渗透串联组成的,前者主要去除有机污染物,而后者去除溶解性无机物。
除病原体
用铝盐和铁盐混凝沉淀,可去除病原体99%以上,经滤池过滤能进一步提高去除率。但是,病原体并未被杀灭,仍在污泥中存活,而用石灰在pH值大于或等于10.5的条件下混凝沉淀则能杀灭污泥中的病毒。用臭氧杀灭病毒的效果也较好。
废水三级处理厂基建费和运行费用都很昂贵,约为相同规模二级处理厂的2~3倍,因此其发展和推广应用受到限制,只运用于严重缺水的地区或城市,回收和利用经三级处理后的出水。
A2/O-MBR+膜分离工艺
在A2/O-MBR组合工艺及其改进工艺的基础上,进一步引入膜分离单元作为再生回用的三级处理单元,可以实现污水资源化高效回用。根据深度处理膜单元自身的特点,可将二级处理出水处理至地表水IV类或以上水质。
传统A2/O工艺基础上增加前置或后置缺氧池,并与MBR相结合,已使得水质可以达到出水达到地表水IV类标准;进一步将其中的0.7万吨/日的MBR出水采用超低压反渗透(DFRO)膜处理,出水水质标准提升至满足国标(GB3838-2002)的地表水Ⅲ类标准,可回灌地下水或用于工业循环用水,同时亦满足湿地公园补水需求。
A2/O-MBR+人工湿地工艺
对于氮磷等部分指标偶尔超标的A2/O-MBR工艺,可后续采用潜流人工湿地,发挥植物根系吸收和富氧作用、基质填料截留及微生物的分解作用,进一步去除氮磷等植物营养物,可有效保障A2/O-MBR工艺出水达到地表水IV类限值。
好氧反硝化
近年来,好氧反硝化现象不断被发现和报道,逐渐受到人们的关注。一些好氧反硝化菌已经被分离出来,有些可以同时进行好氧反硝化和异养硝化。这样就可以在同一个反应器中实现真正意义上的同步硝化反硝化,简化了工艺流程,节省了能量。
好氧反硝化脱氮能力随混合液溶解氧浓度的提高而降低。硝化反应速率随着溶解氧浓度的降低而下降;反硝化反应速率随着溶解氧浓度的降低而上升。
在反硝化过程中会产生N2O,是一种温室气体,产生新的污染,其相关机制研究还不够深入,许多工艺仍在实验室阶段,需要进一步研究才能有效地应用于实际工程中。另外,还有诸如全程自养脱氮工艺、同步硝化反硝化等工艺仍处在试验研究阶段,都有很好的应用前景。
A2/O-MBR及其改进工艺
虽然A2/O工艺具有良好的脱氮除磷效果,但其脱氮效率很难进一步提高。为此,Adam等一批学者提出了将A2/O与MBR相结合(A2/O-MBR工艺)的污水处理方式,不仅出水水质效果好、污染物指标去除率高,而且实现了HRT与SRT之间相互独立,很好地解决了传统活性污泥法同步脱氮除磷时两者所需污泥龄不同的矛盾。如:北京市某污水处理厂(8万吨/日)由A2/O升级改造至A2/O-MBR工艺,改造后出水水质由国标一级A标准提高到北京市地标B标准,主要指标满足地表IV类水体标准。在升级改造过程中,该厂表现出诸多亮点,如占地面积小、污水处理无间断、扩建不扩地、节能型MBR技术、紫外加臭氧氧化技术等。
为提高A2/O工艺的脱氮除磷能力,可在一级A提标改造的基础上进一步形成倒置A2/O-MBR和A2/O-A-MBR等组合工艺。研究的倒置A2/O-MBR中试表明,该系统具有高效的生物除磷效果,主要由于倒置A2/O段理想的释磷环境和MBR段膜分离对胶体形态磷的截留作用;董良飞等在A2/O基础上开展了A2/O-A-MBR工艺处理低碳源城市污水的中试研究,经过60天的调试运行,出水已基本达到地表水IV类的回用要求,进一步提高了脱氮除磷的水平。
除有机物
活性炭能有效地除去二级处理出水中的大部分有机污染物。一些三级处理厂的粉末活性炭接触吸附装置(或粒状活性炭过滤吸附装置)去除化学需氧量(COD)和总有机碳(TOC)的代表性的效率为70~80%,每公斤活性炭吸附容量为0.25~0.87公斤COD,具体吸附容量是由进水的有机物浓度和所要求的出水有机物浓度决定的。在任何情况下,活性炭的实际吸附容量比按吸附等温线试验测定的吸附容量大得多。这主要是在活性炭上还有生物吸附和氧化作用所致(见废水活性炭处理法)。
臭氧氧化法和活性炭吸附法配合使用,往往能更有效地去除有机物并可延长活性炭的使用寿命。臭氧能将有机物氧化降解,减轻活性炭的负荷,还能将一些难以生物降解的大分子有机物分解为易于生物降解的小分子有机物,而便于被活性炭吸附和生物降解。臭氧氧化的废水流经活性炭滤池时因含有较多的氧气而会增强活性炭的生物活性,提高生物氧化能力。
短程硝化反硝化
生物硝化反硝化是应用广泛的脱氮方式。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化(将氨氮氧化至亚硝酸盐氮即进行反硝化),不仅可以节省氨氧化需氧量而且可以节省反硝化所需炭源。
亚硝酸型脱氮可明显提高总氮去除效率,氨氮和硝态氮负荷可提高近1倍。此外,pH和氨氮浓度等因素对脱氮类型具有重要影响。与常规生物脱氮工艺相比,该工艺氨氮负荷高,在较低的C/N值条件下可使TN去除率提高。
厌氧氨氧化和全程自养脱氮
厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。
厌氧氨氧化菌是专性厌氧自养菌,因而非常适合处理含NO2-、低C/N的氨氮废水。与传统工艺相比,基于厌氧氨氧化的脱氮方式工艺流程简单,不需要外加有机炭源,防止二次污染,又很好的应用前景。
全程自养脱氮工艺是在限氧的条件下,利用*自养性微生物将氨氮和亚硝酸盐同时去除的一种方法,从反应形式上看,它是中温亚硝化和厌氧氨氧化工艺的结合,在同一个反应器中进行。
厌氧氨氧化和中温亚硝化过程都可以在气提式反应器中运转良好,并且达到很高的氮转化速率,氨氮的去除率达95%,总氮的去除率达90%。
除氮
生物硝化-反硝化法:是好氧生物处理过程和厌氧生物处理过程串联工作的系统。污水中的含氮有机物首先经需氧生物处理转化为硝酸盐,随后再经厌氧生物处理将硝酸盐还原为氮气析出而被去除。有多种处理流程,如三级串联的活性污泥法处理系统,其中*级用于氧化碳水化合物,第二级用于氧化含氮有机物,而第三级是使第二级产生的硝酸盐在厌氧条件下还原析出氮气。在所有的处理流程中,都是向厌氧系统中投加一些补充的需氧源(如甲醇),以使反硝化所需的反应时间缩短而切合实用。
物理-化学法:有三种方法,即吹脱法、折点氯化法和选择性离子交换法。①吹脱法:使污水的铵离子在高pH值的条件下大部转变成氨气:
NH4++OH-=NH3↑+H2O
在温度25℃和pH值为7、9、11的条件下,溶液中NH4+与NH3的分配比分别为180、1.8和0.018,因此吹脱法除氮适宜的pH值在11左右。将污水调到这样高的pH值以后送入吹脱塔中,自上而下喷洒流动,与向上流动的空气逆流接触而将氨气吹出。吹脱法的除氮效率主要受到温度的影响。如在气温为20℃和10℃时,除氮率分别为95%和75%。②折点氯化法:见水的消毒。③选择性离子交换法:是以沸石(特别是斜发沸石)对铵离子比对钙、镁和钠等离子有优先交换吸附的性能为基础来去除氨氮的。将斜发沸石破碎筛分成20~50目的颗粒,填装于滤池中。废水大约以每小时10倍滤床体积的滤速流经沸石滤池。大约流过200倍滤床体积的正常浓度的城市污水以后,滤出水中会出现氨氮。此时便需要用浓食盐水溶液对沸石滤床进行再生。用过的浓食盐溶液可通过吹脱等方法脱氨,然后重复使用。
工艺流程叙述:
废水自流调节池,调节池不仅起水量调节作用,同时对水质起均化作用。废水泵将废水至“快速废水处理机”,自动加药装置投加各种药剂和废水在反应器中充份混合,采用搅拌机混合,使污水脱稳,水中SS及大部分COD、以颗粒形式析出并絮凝成团,絮凝团中包特定的,继而污水一个特定的高能物理场,靠其强大的能量场吸附力,使得水中的絮体瞬间就被吸附除去。剩下来的絮体经浓缩成泥一体机外。除去杂质絮体后的清水从水管,清水清水池回用 
清洗维护及注意事项
一、清洗维护
1.设备清洗
反应器的清洗:设备长时间运行后,反应器中沉淀物会增加,影响设备产率,应定期清洗,一般半年清洗一次。设备主机背侧有排污口,可进行清洗排污。清洗时,在水射器正常工作状态下,从进气口抽入清水,清水将随反应器内的液体一同被水射器抽走;也可打开安全阀,往里注入清水进行清洗,当水射器液体基本无颜色后,打开排污阀,将残液排净,反复几次,直至清洗干净为止。
原料箱的清洗:将原料从原料排污阀放尽,再关闭原料箱排污阀,吸入清水,再将清水排出,反复多次洗净为止。吸清水的操作同吸原料的操作相同。
2.清理过滤网
定期清洗过滤器的过滤网。
3.计量泵的维护
计量泵在使用时或冲洗设备时一定要防水。原料箱加完料后检查计量泵输料管中是否有气体进入,如有,应及时排掉。应经常检查计量泵有无泄漏,如有泄漏,应及时上紧螺栓或进行维修 (详见计量泵说明书)。
二、注意事项
1.计量泵应注意防水。
2.设备外壳为PVC塑料,禁止碰撞挤压避免日晒。
3.冬天应注意防冻,并采取必要的防冻措施,以免损坏设备及加药管道,设备间应干燥、避光、通风良好。
4.打开或关闭水射器时,若投加点位置较高或有压力时,应同时打开或关闭水射器上下两个阀门,以免水射器承受过高压力而损坏。
5.确保进气管路通畅。
6.设备运行时出气管路一定要通畅,水射器一定要正常工作,以确保设备在负压条件下工作。(设备在负压条件下工作的标志为——可以听到设备内有鼓泡声)
在污水的一级物化处理工序中,活性炭主要用作絮凝吸附分离剂,用于吸附或协助絮凝一些难生化降解或对微生物有毒害的有机污染物。典型的应用技术是粉末活性炭工艺,在石化、印染、焦化工业污水中投加适量粉状活性炭,可除去污水中不可生物降解的色度、臭味,避免曝气池发泡现象,同时可以使混凝絮体或生物絮体迅速增长而沉淀,还能除去污水中的重金属离子及其络合物.
工业污水的深度处理和回用是解决我国缺水问题的一种主要途径。一般情况下.工业污水经过一级物化和二级生化处理即可达标排放,但若需要对处理后的污水进行回用,则需进行三级深度处理。在三级处理工序中,活性炭主要用来吸附脱除水中的残留的难降解有机污染物(POPS,包括杂环、多环化合物及~些长链脂肪烃,使出水质达到生产回用的要求,此时活性炭主要起两种作用:一是普通吸附剂,二是生物膜载体,形成生物活性炭。
可用于水处理的煤质顺粒炭和粉状炭作用相同,但顺位炭不易流失,容易再生重复使用,适合用于污染较轻、裕连续运行的水处理工艺,而粉状炭目前不易回收,一般为一次性使用,一般用于间歇的污染较重的水处理工艺。
接种污泥及接种量
一般来说,对接种污泥无特殊要求,但接种污泥的不同对形成颗粒污泥的快慢有直接影响。因此,保证污泥的沉降性能好、厌氧微生物种类丰富、活性高,对加快颗粒污泥的形成是十分有利的。
对接种污泥的量,有学者研究认为,厌氧污泥接种量为11.5kgVSS/m3(按反应区容积计算)左右时,对于迅速培养出厌氧颗粒污泥是合适的。
启动方式
采用低浓度进水,结合逐步提高水力负荷的启动方式有利于污泥颗粒化。这是因为低浓度进水可以有效避免抑制性生化物质的过度积累,同时较高的水力负荷可加强水力筛分作用。
水力负荷
这是重要的一条,需要循序渐进。水力负荷太低,会导致大量分散污泥过度生长,从而影响污泥的沉降性能,甚至会导致污泥膨胀。但水力负荷过大,会对颗粒污泥造成剪切并会剥落未聚集细胞体的胞外多糖粘滞层而阻碍粘附聚集。因此,在启动初期,应采用较小的水力负荷(0.05-0.1m3/m2 ?h)使絮体污泥能够相互粘结,向集团化生长,有利于形成颗粒污泥的初生体。当出现一定量的污泥后,提高水力负荷至0.25 m3/m2?h以上,可以冲走部分絮体污泥,使密度较大的颗粒污泥沉降到反应器底部,形成颗粒污泥层。为了尽快实现污泥颗粒化,把水力负荷提高到0.6m3/m2?h时,可以冲走大部分的絮体污泥。但是,提高水力负荷不能过快,否则大量絮体污泥的过早淘汰会导致污泥负荷过高,影响反应器的稳定运行。
巴颠甫(Bardenpho)同步脱氮除磷工艺
本工艺各组成单元的功能如下:   (1)、原污水进入*厌氧反应器,本单元的首要功能是脱氮,含硝化氮的污水通过内循环来自*好氧反应器,本单元的第二功能是污泥释放磷,而含磷污泥是从沉淀池派出回流来的。 (2)、经*厌氧反应器处理后的混合液进入*好氧反应器,它的功能有三:首要功能是去除BOD,去除由原污水带入的有机污染物;其次是硝化,但由于BOD浓度还较高,因此,硝化程度较低,产生的NO3ˉ—N也较少;第三项功能则是聚磷菌对磷的吸收。按除磷机理,只有在NOxˉ 得到有效的脱水后,才能取得良好的除磷效果,因此,在本单元内,磷吸收的效果不会太好。
   (3)、混合液进入第二厌氧反应器,,本单元功能与*厌氧反应器同,一时脱氮;二是释放磷,以前者为主。
   (4)、第二好氧反应器,其首要的功能吸收磷,第二项功能是进一步硝化,再其次则是进一步去除BOD。 (5)、沉淀池,泥水分离是它的主要功能,上清夜作为处理水排放,含磷污泥的一部分作为回流污泥,回流到*厌氧反应器,另一部分作为剩余污泥排出系统。   优点:从前述可以看出,无论哪一种反应,在系统中都反复进行二次获二次以上。各反应单元都有其首要功能,并兼行其它项功能。因此本工艺脱氮、除磷效果好,脱氮率达90%~95%,除磷率达97%。
    缺点:工艺复杂,反映其单元多,运行繁杂,成本高是本工艺的主要缺点。
化学法除磷   许多金属的正磷酸盐都有很低的溶度积,所以可以采用向污水投入金属盐类的方法,形成这些金属的正磷酸盐沉淀物,再通过固液分离达到将磷从污水中取出的目的。由于这些沉淀物的溶度积很低,所以用化学沉淀法可以将污水中磷降低到极低的程度,能够满足《城镇污水处理厂污染物排放标准》。
生物法除磷
   生物法脱磷是在好氧条件下PAO对污水中溶解性磷酸盐过量吸收,然后进行沉淀分离。在厌氧和好氧交替的生物处理系统中除磷。
同步脱氮除磷技术
   在一个处理系统中同时去除氮、磷和含碳有机物的工艺称为同步脱氮除磷技术。
碱度
一般认为,进水水质中碱度通常应在1000mg/L(以CaCO3计)左右,而对于以碳水化合物为主的废水,进水碱度:COD >1:3是必要的。有学者研究表明,在颗粒污泥培养初期,控制出水碱度在1000mg/L(以CaCO3计)以上能成功培养出颗粒污泥。在颗粒污泥成熟后,对进水的碱度要求并不高。这对降低处理成本具有积极意义。
量元素及惰性颗粒
微量元素对微生物良好的生长也有重要作用。其中Fe,Co,Ni,Zn等对提高污泥活性,促进颗粒污泥形成是有益的。
此外,惰性颗粒作为菌体附着的核,对颗粒化起着积极的作用。另外,有研究表明,投加活性炭可大大缩短污泥颗粒化的时间;在投加活性炭后颗粒污泥的粒径大,并使反应器运行更加稳定。
SO42-
关SO42-对颗粒污泥的形成目前尚在讨论中。据Sam-Soon的胞外多聚物假说,局部氢的高分压是诱导微生物产生胞外多聚物从而与细菌表面之间的相互作用,通过带电基团的静电吸引及物理接触等架桥作用,构成一种包含多种组分的生物絮体,从而形成颗粒污泥的必要条件,而有硫酸盐存在时,由于硫酸盐还原菌对氢的快速利用,使反应器无法建立高的氢分压,从而不利于形成颗粒污泥。但有些国内外外学者发现处理含高硫酸盐废水时,会有非常薄的丝状体产生,它可作为产甲烷丝菌附着的原始核,从此开始颗粒的形成;硫酸盐还原产生的硫化物与一些金属离子结合形成不溶性颗粒,可能成为颗粒污泥生长的二次核。
生物法脱氮  污水生物脱氮过程中,污水中各种形态的氮一部分通过氨化、硝化、反硝化作用转化为氮气,以气体形式从水中脱除;另一部分则在上述作用中转化为细菌细胞,再以污泥形式从水中分离出去。
生物接触氧化法即在反应器内放置填料,以生物填料为载体经过充氧的废水与长满生物膜的填料接触,在生物膜的作用下,废水得到净化。其工作原理和优点如下:
(1)、原理:
生物接触氧化法在运行初期,少量的细菌附着于填料表面,由于细菌的繁殖逐渐形成很薄的生物膜。在溶解氧和食物都充足的条件下,微生物的繁殖十分迅速,生物膜逐渐增厚。微生物将污水中的污染物质转化为微生物细胞及CO2、H2O、H2S、N2、CH4等多种物质,溶解氧和污水中的有机物凭借扩散作用,为微生物所利用。当生物膜达到一定厚度时,氧已经无法向生物膜内层扩散。好氧菌死亡脱落,而兼性菌、厌氧菌在内层开始繁殖,形成厌氧层,利用死亡的好氧菌为基质,并在此基础上不断发展厌氧菌。经过一段时间后在数量上开始下降,加上代谢气体产物的逸出,使内层生物膜大块脱落。在生物膜已脱落的填料表面上,新的生物膜又重新发展起来。在接触氧化池内,由于填料表面积较大,所以生物膜发展的每一个阶段都是同时存在的,使去除有机物的能力稳定在一定的水平上。生物膜在池内呈立体结构,对保持稳定的处理能力有利。
(2)、优点:
体积负荷高,处理时间短,节约占地面积,生物接触氧化法的体积负荷zui高可达3?6kgBOD(m3.d),与活性污泥法比较,体积负荷可高5倍。 
生物活性高、曝气管设在填料下,不仅供氧充分。而且对生物膜起到了搅拌作用,加速了生物膜的更新,使生物膜活性提高。其好氧速率比活性污泥法高1.8倍。 
有较高的微生物浓度,一般活性污泥浓度为2?3g/l而接触氧化池中绝大多数微生物附着在填料上,单位体积内水中和填料上的微生物浓度可达10?20g/l,由于微生物浓度高,有利于提高容积负荷。 
污泥产量低,不需污泥回流,与活性污泥法相比,接触氧化法的体积负荷高,但污泥产量不仅不高,反而有所降低。由于微生物附着在填料上形成生物膜,生物膜的脱落和增长可以自动保持平衡,所以不需回流污泥,给管理带来方便。 
出水水质好而稳定,在进水短期内突然变化时,出水水质受影响很小。出水外观清澈透明,如再加砂滤处理。可作中水回用。 
在活性污泥中,除了微生物外,还含有一些无机物和分解中的有机物。微生物和有机物构成活性污泥的挥发性部分(即挥发性活性污泥),它约占全部活性污泥的70%—80%。活性污泥的含水率一般在98%—99%。它具有很强的吸附和氧化分解有机物的能力。
活性污泥是通过一定的方法培养和驯化出来的。培养的目的是使微生物增值,达到一定的污泥浓度;驯化则是对混合微生物群进行选择和诱导,使具有降解污水中污染物活性的微生物成为优势。
1 接种菌种
1.1 接种菌种是指利用微生物生物消化功能的工艺单元,如主要有水解、厌氧、缺氧、好氧工艺单元,接种是对上述单元而言的。
1.2 依据微生物种类的不同,应分别接种不同的菌种。
1.3 接种量的大小:厌氧污泥接种量一般不应少于水量的8-10%,否则,将影响启动速度;好氧污泥接种量一般应不少于水量的5%。只要按照规范施工,厌氧、好氧菌可在规定范围正常启动。
1.4 启动时间:应特别说明,菌种、水温及水质条件,是影响启动周期长短的重要条件。一般来讲,在低于20℃的条件下,接种和启动均有一定的困难,特别是冬季运行时更是如此。因此,建议冬季运行时污泥分两次投加,水解酸化池中活性污泥投加比例8%(浓缩污泥),曝气池中活性污泥的投加比例为10﹪(浓缩污泥,干污泥为8%),在不同的温度条件下,投加的比例不同。投加后按正常水位条件,连续闷曝(曝气期间不进水)7天后,检查处理效果,在确定微生物生化条件正常时,方可小水量连续进水25天,待生化效果明显或气温明显回升时,再次向两池分别投加10﹪活性污泥,生化工艺才能正常启动。
1.5 菌种来源:厌氧污泥主要来源于已有的厌氧工程,如啤酒厌氧发酵工程、农村沼气池、鱼塘、泥塘、护城河清淤污泥;好氧污泥主要来自城市污水处理厂,应拉取当日脱水的活性污泥作为好氧菌种,接种污泥且按此顺序确定优先级。
1.5.1 同类污水厂的剩余污泥或脱水污泥;
1.5.2 城市污水厂的剩余污泥或脱水污泥;
1.5.3 其它不同类污水站的剩余污泥或脱水污泥;
1.5.4 河流或湖泊底部污泥;
1.5.5 粪便污泥上清液。
  驯化培养
2.1  驯化条件
一般来讲,微生物生长条件不能发生骤然的突出变化,常规讲要有一个适应过程,驯化过程应当与原生长条件尽量*,当条件不具备时,一般用常规生活污水作为培养水源,驯化时温度不低于20℃,驯化采取连续闷曝3-7天,并在显微镜下检查微生物生长状况,或者依据*实践经验,按照不同的工艺方法(活性污泥、生物膜等),观察微生物生长状况,也可用检查进出水COD大小来判断生化作用的效果
2.2 驯化方式
2.2.1 驯化条件具备后,连续运行已见到效果的情况下,采用递增污水进水量的方式,使微生物逐步适应新的生活条件,递增幅度的大小按厌氧、好氧工艺及现场条件有所不同。好氧正常启动可在10-20天内完成,递增比例为5-10%;而厌氧进水递增比例则要小的很多,一般应控制挥发酸(VFA)浓度不大于1000mg/L,且厌氧池中PH值应保持在6.5-7.5范围内,不要产生太大的波动,在这种情况下水量才可慢慢递增。一般来讲,厌氧从启动到转入正常运行(满负荷量进水)需要3-6个月才能完成。
2.2.2 厌氧、好氧、水解等生化工艺是个复杂的过程,每个过程都会有自己的特点,需要根据现场条件加以调整。
2.2.3 编制必要的化验和运转的原始记录报表以及初步的建章立制。从培菌伊始,逐步建立较规范的组织和管理模式,确保启动与正式运行的有序进行。
3  注意事项
3.1 活性污泥培菌过程中,应经常测定进水的pH、COD、氨氮和曝气池溶解氧、污泥沉降性能等指标。活性污泥初步形成后,就要进行生物相观察,根据观察结果对污泥培养状态进行评估,并动态调控培菌过程。
3.2 活性污泥的培菌应尽可能在温度适宜的季节进行。因为温度适宜,微生物生长快,培菌时间短。如只能在冬季培菌,则应该采用接种培菌法,所需的种污泥要比春秋季多。
3.3 培菌过程中,特别是污泥初步形成以后,要注意防止污泥过度自身氧化,特别是在夏季。有不少厂都发生过此类情况。这不仅增加了培菌时间和费用,甚至会导致污水处理系统无法按期投入运行。要避免污泥自身氧化,控制曝气量和曝气时间是关键,要经常测定池内的溶解氧含量,及时进水以满足微生物对营养的需求。若进水浓度太低,则要投加大粪等以补充营养,条件不具备时可采用间歇曝气。
3.4 活性污泥培菌后期,适当排出一些老化污泥有利于微生物进一步生长繁殖。 
3.5 如曝气池中污泥已培养成熟,但仍没有废水进入时,应停止曝气使污泥处于休眠状态,或间歇曝气(延长曝气间隔时间、减少曝气量),以尽可能降低污泥自身氧化的速度。有条件时,应投加大粪、无毒性的有机下脚料(如食堂泔脚)等营养物。
建设城市污水处理厂是水资源利用和水污染控制的必然趋势,是可持续发展要求的必然结果。而污水处理厂工艺的选择,直接关系到建设费用和运行费用的多少、处理效果的好坏、占地面积的大小、管理上的方便与否等关键问题。因此,在进行污水处理厂设计时,必须做好工艺方案的比较,以确定优秀方案。
处理厂工艺是指在达到所要求的处理程度的前提下,污水处理各单元的有机组合。确定污水处理厂工艺的主要依据是所要达到的处理程度,而处理程度则主要取决于接受处理后污水的水体的自净能力或处理后污水的出路。因此,各个地区、各个城市的具体情况不同,需求不同,选择的工艺亦有所不同。根据统计资料,目前世界上使用多的是活性污泥法,其中又有不同的模式,如传统活性污泥法、阶段曝气法、曝气沉淀池、A B法、A O法等。当然,也有采用其它方法的如:生物膜法、物理化学法以及自然处理法、氧化塘等。每种处理工艺方法均有其各自的特点及适应范围,应根据当地的各种不同条件和要求选择处理形式。
工艺特点
1.采用成熟的AO工艺路线,具有良好的去除污水中的有机物和的脱氮功能,以排放的要求;
2. 具有的耐冲击负荷能力,以适应水质、水量变化的特点;
3.采用新型填料,挂膜快,寿命长,处理快;
4.充分考虑二次污染产生的可能性,将其影响至低程度;
5. 采用集中控制、自动化运行,易于,可靠性、性。
6.处理设施全部设置在地表以下,不表面积,可作绿化,又利于防冻。
乡镇生活污水处理一体化系统
1、设备运抵现场后开箱、清点和检查 
1)设备运抵现场后,首先看到货是否与设计图中所需要的设备规格、型号相符。部件是否与设计要求的规格、型号、数量相符。箱号、设备型号相符后方允许开箱,以免开错。 
2)开箱时应清扫顶部灰尘,防止这些灰尘散落在设备上,开箱时应使用起钉器或撬杠,不允许用锤斧乱拆,同时应注意不要碰伤设备的凸出部份和表面。 
3)开箱后,把箱内各件与装箱单一一核对、清点。单位部件应有合格证,随机的图纸等技术文件。清点后做好记录。 
2、测量、基准点的设置及基础的校验 
1)施工测量应由专业人员进行,测量人员在施测前要认真学习和校核施工图纸的各部尺寸,了解工程全貌和设计意图,核算出轴中心线的相关尺寸和标高尺寸; 
2)测量所使用的仪器应在检定周期限定的日期内,使用前应对其进行检查和校核。
3)基础的校核 
a测量人员与安装人员配合,测设出设备的辅助中心线及安装平线,根据需要、辅助中心线的位置可用墨线弹在准备安装设备的基础上,以便对基础的尺寸进行明显的检查和结果显示。 
3、混凝剂投加设备安装
1)二氧化氯消毒发生装置安装必须符合设计和设备技术文件规定。 
2)焊接应符合焊缝余高、错边符合标准中规定,焊缝表面严禁有裂纹、夹渣、焊瘤、烧穿、弧坑、针状气孔和融合性飞溅物等缺陷。 
3)垫铁布置必须符合标准中规定。
4)防腐蚀必须符合设计及标准规定。 
5)支座及底座的安装尺寸位置符合设计要求,埋设平整牢固,箱底与地坪接触紧密,支架横平竖直,防腐蚀符合要求。 
4、污水处理器安装 
1)污水处理器安装必须符合设计及设备技术文件规定。
2)防腐蚀及垫铁布置必须符合设计要求及标准规定。 
3)焊接应符合焊缝余高、错边符合标准中规定,焊缝表面严禁有裂纹、夹渣、焊瘤、烧穿、弧坑、针状气孔和融合性飞溅物等缺陷。
5.风机及泵的安装
1)风机及泵体的安装
A风机及泵体的测量和调整 
a找正:找正就是找正风机及泵体的纵横向中心线。风机及泵体的纵向中心线以风机及泵轴中心线为准;横向中心线以出口管的中心为准。找正结果应使其符合图纸设计要求,又能满足与其它设备能很好的连接。纵横向允差 10 mm; 
b找平:抄平用精度0.02mm/m的方水平仪,在风机及泵的进出口法兰或其它水加工平面上进行测量。调整水平时可在泵体支脚与机座之间加薄铁皮来实现,泵体的水平度允许偏差一般为纵向小于0.5/1000,横向小于0.50/1000。 
调节水池污水提升泵为方便检修,安装方法改为链条吊挂,吊挂位置在检修口上,打膨胀螺丝固定并用软管连接。 
6.管路安装
a 管道法兰、焊缝及其他连接件的安装符合安装位置符合设计要求,并不得紧贴墙壁和管架,朝向合理,便于检修。 
b 管道安装的坡向、坡度符合设计要求。
c管道穿越墙壁、楼板、屋面时穿越位置及保护措施符合设计要求。穿墙及过楼板的管道加有套管,但管道焊缝位于套管外。穿墙套管长度大于墙厚,穿楼板套管高于楼面或地面50mm。穿过屋面的套管有防水肩和防水帽;管道与套管的空隙用石棉和其他不燃材料填塞。 
d 法兰连接的质量符合两法兰应平行并保持同轴性,螺栓能自由穿入,螺栓穿向*,外漏长度相等。  
e阀门安装的型号符合设计要求,安装位置、进出口方向正确、连接牢固、紧密,启闭灵活,手轮、手柄朝向合理,阀门表面洁净。
7. 控制箱、接线箱的安装 
水泵控制采用分布式控制,各控制器安装于现场设备附近,总控制器安装在*变电所。 
(1).基础型钢的安装  
A 调直槽钢,将有弯的槽钢用调直机调直,然后按图纸要求并结合各个箱体的实际尺寸,预制加工槽钢架,并刷好防锈漆。  
B槽钢与地线连接:将接地扁钢与槽钢的两端焊牢,焊接长度为扁钢宽度的2倍,不少于三面焊接,焊接处补刷防锈漆。 
C槽钢敷设完毕后,再刷两遍面漆进行保护。
(2).设备就位安装 
各个控制箱、接线箱安装均采用镀锌螺栓固定在安装好的基础型钢上,严禁焊接,以免对其内部计算机等敏感电子元件造成损坏。用磁力线坠测量盘面上下端与吊线的距离。如果上下相等,表示盘已垂直;如果距离不等,可用1-2mm薄铁片加垫,使其达到要求。箱体安装应牢固、平整、垂直。
(3).质量要求 
控制器、信号接线箱挂墙明装,其地边距地1.3米,固定牢靠,零部件完整,操动部分灵活,分合闸指示正确,闭锁装置齐全可靠,柜内清洁无杂物,油漆完整、均匀。 
8.接地系统的制作与安装
(1).接地系统的制作与安装:本系统工作接地与*变电所系统共用接地极,接地电阻不大于1欧姆,利用电缆桥架、金属保护管做接地线,电缆沟内利用40*4镀锌扁铁做为接地干线。 
(2).各种用电设备的不带电金属外壳均应可靠接地。利用桥架作为接地线时,各段桥架之间均需进行可靠的电气连接。 
(3).接地线的连接:连接时焊接的长度应不小于扁钢宽度的2倍,焊接处应焊接牢固、焊缝饱满,且要采取防腐措施。接地线与设备的连接,可用螺栓连接或焊接,用螺栓连接时应设防松螺帽或防松垫圈。
(4).接地系统中严禁有串联接地现象。 
(5).动力系统中所有电气设备及金属构件均要求可靠接地,并且要求接地电阻小于1欧姆。其连接处均要求联接牢固,并要求动力系统、计算机系统实现总等电位连接。

农村无动力生活污水处理器

农村无动力生活污水处理器;生活污水净化沼气池是一种

新农村污水处理系统

新农村污水处理系统;它的处理效果优于*混合式或二、

农村生活污水处理系统厂家价格

农村生活污水处理系统厂家价格;污水处理池将初沉池、

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~

以上信息由企业自行提供,信息内容的真实性、准确性和合法性由相关企业负责,环保在线对此不承担任何保证责任。

温馨提示:为规避购买风险,建议您在购买产品前务必确认供应商资质及产品质量。

在线留言