武汉华顶电力设备有限公司

当前位置:武汉华顶电力设备有限公司>>绝缘高压试验设备>>冲击电压发生器>> HDCJ雷电冲击电压发生器电气成套厂用

雷电冲击电压发生器电气成套厂用

参  考  价:面议
具体成交价以合同协议为准

产品型号HDCJ

品牌华顶电力

厂商性质生产商

所在地武汉市

更新时间:2022-11-08 18:10:17浏览次数:270次

联系我时,请告知来自 环保在线

涂建

销售
扫一扫,微信联系
雷电冲击电压发生器电气成套厂用。一套设备就可产生多种试验波形(标准的和非标准的波形,用户提出来的波形)。 适用领域:质检鉴定计量检测监督机构,电力设备制造厂,铁路在其面向配电网应用中增加了资产管理、工作管理、规划管理、配电网管理、GIS、停等信模型。目

.产品简介:
    HDCJ雷击冲击电压发生器用于电力设备等试品进行雷电冲击电压全波、雷电冲击电压截波和操作冲击电压波的冲击电压试验,检验绝缘性能. 

      冲击电压发生器主要用于电力设备等试品进行雷电冲击电压全波、雷电冲击电压截波和操作冲击电压波的冲击电压试验,检验绝缘性能。冲击电压发生器一种模仿雷电及操作过电压等冲击电压的电源装置。主要用于绝缘冲击耐压及介质冲击击穿、放电等试验中。

      华顶电力生产的100~10000kV系列各种容量成套冲击电压(电流)试验装置。并可提供多种波形系列成套冲击电压(电流)发生器。冲击试验装置主要由:发生器本体、截波、分压器、四组件控制台(控制台分为微机型和普通型)、数字化波形记录系统等组成。

      适用范围:变压器、电抗器、互感器及其它高压电器、高压晶闸管阀SVC(HVDC)、电力电缆、各类高压绝缘子、套管等试品的标准雷电冲击,雷电截断波,操作冲击及用户要求的非标准冲击波的各类冲击电压试验。一套设备就可产生多种试验波形(标准的和非标准的波形,用户提出来的波形)。 适用领域:质检鉴定计量检测监督机构,电力设备制造厂,铁路通信

产品别称:冲击电压发生器,雷电冲击电压发生器试验装置,雷电冲击电流发生器,电压发生器试验装置
    HDCJ雷击冲击电压发生器满足现行标准、国家标准及有关行业标准。本套装置所输出电压波形及效率:(负荷电容小于5500pF时包含分压器电容)下,可产生标准雷电冲击电压波形数量:3个。

主要特点:

     1、回路电感小,并采取带阻滤波措施,在大电容量负载下能产生标准冲击波,负载能力大。
     2、电压利用系数高,雷电波和操作波分别不低于85%和80%。
     3、调波方便,操作简单,同步性能好,动作可靠。
     4、采用恒流充电自动控制技术,自动化程度高,抗干扰能力强。

   A.标准雷电冲击全波电压波形
   波头时间:1.2±30%μs,波尾时间:50±20%μs,过冲:小于5%,效率:不低于90%。±1.2/50μs标准雷电冲击电压全波,效率大于90%。
   B.标准雷电冲击截波电压波形。
   波头时间:1.2±30%μs,过冲:小于5%,截断时间:2~6μs,电子时延控制,效率:不低于90%,采用截断装置可产生截断时间2~6μs的雷电截波,截波分散性小于100ns。
   C.变压器电抗器雷电冲击电压试验的示伤电流全波波形。

二.执行标准:
    GB311.1-1997高压输变电设备的绝缘配合
    GB/T16927.1-1997高电压试验技术,一般试验要求
    GB/T16927.2-1997高电压试验技术,测量系统
    GB/T16896.1-1997高电压冲击试验用数字记录仪
    ZB F24 001-90冲击电压测量实施细则
    GB191 包装运标志
    GB4208 外壳防护等级
    GB813-89 冲击试验用示波器及峰值表
三.使用条件:
    本冲击电压发生器试验系统装置主要适用于900kv及以下电力产品的雷电冲击电压全波,也可用于其它产品的冲击试验。
    1.海拔高度不超过1500m
    2.环境温度:-15~+50℃
    3.空气相对湿度:≤90%
    4.安装使用地点:户内使用,可移动
    5.必须设有一个屏蔽控制室及可靠接地点,接地电阻<1Ω!
    6.冲击发生器(型号:HDCJ-900/33.7)
       A.冲击发生器主要技术参数
       B.标称雷电波冲击电压:HDCJ-900kV
       C.标称容量(能量):33.75kJ
       D.级电容:0.6μF,100kV(100kV-0.6μF)干式全绝缘封装
       E.级电压:±150kV 
       F.级数/级容量:5 / 6.75kJ
       G.输出波形:±1.2/50μs标准雷电冲击电压全波,效率大于90%;
       H.同步范围:大于20%
       I.使用持续时间:
         小于80%额定工作电压时可连续工作
          大于80%额定工作电压时可间断工作
      J.幅值调节误压差小于1%,输出电不大于10%设备标称电压。
      K.同步误动率:小于1%
      L.底座:2m × 1.5m (脚轮移动)。
      高度:约3.5米。
      重量:约860kg。
7.冲击电压发生器的技术说明
      A.发生器的结构
      B.采用瑞士HAEFELY公司SGS系列的主回路设计,从而实现了整体超小型。
      C.采用每分钟一转的低速齿轮齿条传动机构调整各级球隙,不仅无噪声、磨损小,而且定位快速、准确。
      D.采用弹簧压接、方便拔插的调波电阻固定机构,保证了接触的可靠性,使输出波形光滑无毛刺。
      E.配合PLC电气控制系统的脉冲放大器可使同步球隙具有20%以上的触发范围,保证触发的可靠性,控制方便可靠。
      F.同步球隙的触发无极性效应,无须双边触发。
8.主电容器
    A.主电容器采用高密度固体电容器,每台电容量为0.6±0.05μF,直流工作电压为±100kV,电容器固有电感小于0.2μH,重量轻,体积小,
    B.电容器在正常工作状态和工作环境下凹凸变形小于1mm。
    C.电容器为固体绝缘介质和外壳干式全绝缘封装,不存在漏油、变形等问题。
9.调波元件
    A.波头、波尾电阻具有足够的热容量,可保证发生器长时间连续运行。
    B.充电电阻具有足够的热容量,可保证发生器长时间连续运行。
    C.波头、波尾电阻采用板形结构,使用康铜丝无感绕制而成,外部采用绝缘树脂真空浇铸,接头为弹簧压接式,易于安装。
    D.波头、波尾电阻的连接头采用3mm不锈钢线切割制造。
    E.共有1组半波头电阻、1组半波尾电阻用于雷电冲击,另有1组充电电阻和保护电阻。
10.控制、保护系统
   采用PLC电气控制系统为冲击电压发生器主体部分提供各种控制,*冲击试验的各种控制 
功能。PLC控制系统采用进口PLC器件,与设备主体的连接采用两芯光缆。
   A.PLC全自动控制系统实现手动控制。软件包可以与测量和波形分析用的峰值电压表、示波器等配合使用,实现冲击电压试验系统计算机测控一体化。
  B.控制系统具备以下控制功能:
   1.控制功能具有手动控制,各层次功能相对独立,确保系统的可靠性。
   2.采用可控硅调压方式,具有充电电压反馈测量系统。
   3.点火球隙可手动,并在控制面板上显示。
   4.采用函数控制恒流充电方式,充电电压的稳定度可达到0.5%。
   5.液晶面板可指示冲击发生器的充电电压,精度为1%。
   6. 具有充电异常保护功能,手动发出触发点火脉冲
   7.设备主体及充电部分接地和接地解除控制。
   8.手动控制充电电压的充电过程
   9.手动响警铃报警
   10.具有过电流和过电压自动保护
  C.同步球隙*级采用三电极球隙触发,触发范围大于20%。
  D.安全接地系统
  E.采用电磁铁自动接地机构通过一个接地电阻将发生器的*级电容接地。
  F.接地操作与充电控制具有连锁保护,确保操作安全正常。
11.主要配置的设备
  A.整流充电电源(与冲击本体一体化)
     型    号:HDLGR-100/100
     额定电压:Un = 100kV DC (正或负极性)
     额定电流:In = 100mA (额定电压下)
     电压控制:可控硅模块调压,调压范围0~100% Un
     极性转换:手动变换高压硅堆的方向
     输入电压:220V 单相电压
     电源频率:50/60 Hz 
     电源消耗:约5kVA
  B.弱阻尼电容分压器
     型    号:HDCR-900kV/500pF
     额定电压:900kV
     额定电容:500pF
     电容节数:2节,每节电容:1000pF(375-1200脉冲电容器)
     方波响应:部分响应时间小于100ns,过冲小于10%
     分压比:约500,分压比不确定度:小于1%
  C.测量设备
     型    号:HDIMS-1000数字化冲击测量系统
      幅值测量:HZ(IPM)23型冲击峰值电压表
     输入范围:150V ~ 1600V(冲击电压)
     测量不确定度:小于1%
     波形测量:TDS1012C-SC数字示波器,采样率1.0GS/s,带宽大于100MHz,分辨率8bit,记录长度2.5k字节(可满足冲击试验要求),2通道
     波形分析:工业控制计算机工作站(采用15寸液晶显示屏)
     冲击测量软件包:冲击波形参数计算及显示,波形比较功能,波形的放大、缩小及平移,波形的存储及调用,波形的成图及报告编写
附    件:高性能100倍衰减器1支
隔离滤波屏蔽

大量的DER、DFACTS设备,使故障电流不再是由系统侧单向流入故障点,其分布规律与传统配电网有很大的不同,需要研究新的故障检测和定位方法。其中一个解决方案是比较故障电流的方向来检测故障区段(故障区段馈线电流同方向),故障电流方向通过比较电压和电流相位检测;另一个方案是比较故障电流的相位(故障区段馈线电流同相位)判断故障区段。相位法不需要测量电压,但需解决采样时间的同步问题。此外,DFACTS设备的大量应用也会影响故障电流波形、频率及其分布,需要加以解决。

对于中性点非有效接地系统的单相接地(小电流接地系统)故障,目前的故障定位方法有利用故障暂态信号的方法(暂态法)、中性点投入电阻法与注入信号寻迹法l3]。对于电阻法与信号注入法,在SDG中也会遇到与上述短路故障检测类似的问题;而对于暂态法来说,可通过比较故障点两侧暂态零序电流波形的极性或相似性实现定位。厂级监控信息系统(SIS)分散控制系统(DCS)单元机组电气控制系统(ECS)升压站控制系统(NCS)现场总线控制系统(FCS)

汽机调节系统(DEH)这些系统同电厂的生产活动密切相关,以实时数据为主,网络承担了对各系统的采集点数据的传输工作,还要提供对这些系统的实时数据的连接。网络平台本身的稳定性、可靠性,和数据的实时性要求的满都非常的重要,这些要求包括了对数据传输的延时,延时抖动,丢包率等指标。4. 快速仿真与模拟技术

配电网快逮仿真与模拟(Distribution—Fast Simulation and Modeling,D-FSM)技术提供实时计算工具,分析预测配电网运行状态变化趋势,可对配电网操作进行仿真并进行风险评估,并向运行人员推荐调度决策方案。

D-FSM 是保证SDG安全可靠、高效优化运行的重要技术手段配电网节点众多、网络复杂,三相负荷不平衡现象严重、数据不健全,使得对其进行的计算分析不同于输电网,考虑DER、DFACTS设备的大量应用,更使其难度与复杂程度大为增加,因此还有大量的研究工作要做。 企业集成总线

企业信息集成总线(UIB)的核心技术包括以下几方面内容。1)公用数据模型。

IEC 61970标准规定了用于EMS应雷电冲击电压发生器电气成套厂用用程序接口(API)的公用信息模型(Common Information Model,CIM)。IEC 61968扩展了C1M,在其面向配电网应用中增加了资产管理、工作管理、规划管理、配电网管理、GIS、停等信模型。目前的研究工作,一方面是扩展CIM,使其覆盖DER等新应用;另一方面,研究CIM与 IEC 61850中变电站自动化数据模型的统一与协调。利用中间件将应用软件封装为可以在异构平台上运行的组件,实现其在UIB上的共享。以前UIB的中间件 般都使用公共对象请求代理体系结构(CORBA),其优点是实时性好,不足之处是复杂 成本较高。近年来出现的企业服务总线(""Enterprise Service Bus,ESB)技术,是传统中间件与XML、Web服务等技术结合的雷电冲击电压发生器电气成套厂用产物,易于实现,可靠性高。目前,供电企业普遍存在“自动化孤岛

HDCJ-A系列冲击电流发生器

HDCJ-A系列冲击电流发生器采用进口无感大功率,

HDCJ-V系列冲击电压发生器

HDCJ-V系列冲击电压发生器用于雷电冲击电压全波

HDCJ雷电陡波头冲击电压发生

HDCJ雷电陡波头冲击电压发生器波头时间:1.2&

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~

以上信息由企业自行提供,信息内容的真实性、准确性和合法性由相关企业负责,环保在线对此不承担任何保证责任。

温馨提示:为规避购买风险,建议您在购买产品前务必确认供应商资质及产品质量。

拨打电话
在线留言