潍坊鲁盛水处理设备有限公司
初级会员 | 第6年

13070717631

一体化污水处理设备
地埋式污水处理设备
疾控中心污水处理设备
卫生服务中心污水处理设备
医院污水处理设备
服务区污水处理设备
微动力污水处理设备
无动力污水处理设备
玻璃钢污水处理设备
卫生院污水处理设备
二级生化污水处理设备
污水处理一体机
加油站污水处理设备
MBR污水处理设备
景区污水处理设备
牙科污水处理设备
气浮机
实验室废水处理设备
金属配件清洗污水处理设备
印染污水处理设备
屠宰污水处理设备
化粪池污水处理设备
收费站污水处理设备
接触氧化污水处理设备
餐具清洗污水处理设备
AO地埋式一体化污水处理设备
一体化预制泵
喷涂污水处理设备
食品厂污水处理设备
净化槽
臭氧消毒设备
叠螺机
加药装置
化工污水处理设备
活性炭投加设备
混凝沉淀设备
三仓式厌氧反应器
一体化净水器
玻璃钢立式储罐

屠宰污水处理一体化成套装置

时间:2020/10/19阅读:315
分享:

屠宰污水处理一体化成套装置

 背景技术
为了保障人民群众食肉的安全、卫生,国家规定集中检疫、定点屠宰。 屠宰厂里,每天都产生带禽畜血及可溶性蛋白质、粪便、毛骨、废弃内脏 的污水。当前,大型肉联厂的污水处理装置比较完善,处理效果也较好。 但是工艺流程长,工程投资高,占地面积大,管理复杂,运行费用高。这 对于每天排放污水仅有100吨左右的中小屠宰厂是难以承受的,这些中小 屠宰厂遍布全国各地,虽然采用过多种污水处理设施,但由于
达不到预期 效果,或其它原因,很少运行,甚至停用。致使污水不能进入城市污水治 理厂的管网,滞留在地表低洼处或沟渠中,败后奇臭难闻,蚊蝇滋生, 严重污染了屠宰厂及周边的卫生环境,危及居民的健康,如有疫情,更是 传染源之一。这种污水富含营养物质,若流入田野,将使作物疯长,不结 果实,严重影响生态环境。因此,妥善处理中小定点屠宰厂污水是一项迫 切需要解决但又是难以解决的问题。

  

屠宰污水处理一体化成套装置包括污水沟和污物贮池,特点是污水沟、隔污池、反应池、过滤池依次连接连通,加药器设在反应池旁;隔污池内设隔离栅网,下设通孔;反应池内设框式搅拌器,下设污水泵,由管道与过滤池连通;过滤池内设填料,下设排水口。污水流过隔离栅网,固体污物被隔离在隔污池内;血及可溶性蛋白质在反应池内与药剂反应,生成沉淀物质;经过过滤池过滤,排出清水。其优点是结构简单、紧凑、合理,投资少,占地少;操作简单,运行处理及时,隔离固体污物,脱除了血红素和可溶性蛋白质,还有消毒功能,出水清澈、无臭、无菌,方便进一步处理,保持屠宰厂及周边清洁卫生,优化了生态环境。

工作原理
MBR为活性污泥法+膜分离。MBR(膜生物反应器)是一种由膜分离单元与生物处理单元相结台的新型水处理技术,以高抗污染FR-MBR膜组件取代二沉池(或滗水器)在生物反应器中保持高活性污泥浓度减少污水处理设施占地,并通过保持低污泥负荷减少污泥量。
MBBR为生物膜法。MBBR(载体流动床移动床生物膜反应器),其原理是通过向反应器中投加一定数量的悬浮载体,提高反应器中的生物量及生物种类,从而提高反应器的处理效率。由于填料密度接近于水,所以在曝气的时候,与水呈*混合状态,另外,每个载体内外均具有不同的生物种类,内部生长一些厌氧菌或兼氧菌,微生物生长的环境为气、液、固三相。载体在水中的碰撞和剪切作用,使空气气泡更加细小,增加了氧气的利用率外部为好养菌,这样每个载体都为一个微型反应器,使硝化反应和反硝化反应同时存在,从而提高了处理效果。MBBR的核心就是增加填料,*设计的填料在鼓风曝气的扰动下在反应池中随水流浮动,带动附着生长的生物菌群与水体中的污染物和氧气充分接触,污染物通过吸附和扩散作用进入生物膜内,被微生物降解。附着生长的微生物可以达到很高的生物量,因此反应池内生物浓度是悬浮生长活性污泥工艺的数倍,降解效率也因此成倍提高。
有机物的去除方面:两种工艺对COD、BOD、氨氮都有较高的去除率。高抗污染FR-MBR膜
依靠的是其较高的污泥负荷,MBBR工艺依靠的是其填料上的生物膜。
综合工艺
膜技术与化学处理、生化处理和吸附处理等常规分离技术结合能够得到合理的处理效果。相关学者提出了新型的垃圾渗滤液综合处理技术,此类技术采用回灌填场厌氧生物处理技术之外,还可以将混凝沉淀工艺根据填埋场的具体范围来布置或者保留膜技术。
在设计进水过程中,将COD进水浓度设置为1400mg/L~20000mg/L,经过工艺流程处理之后,终COD出水浓度小于110mg/L。上述工艺利用好氧生物处理微滤工艺,能够有效提高有机污染物的去除能力,为反渗透的正常运行提供合适的条件。
充分利用反渗透的分离性能,不仅能够使得分离之后的渗滤液COD浓度能够达到标准要求,而且能够为后续生物硝化提供生长环境,从而大幅度地降低NH3-N浓度,减少生物硝化的电耗,终降低运行费用。RO处理技术的应用能够确保重金属离子的有效排放,使得处理过后的水质能够符合我国的相关标准要求。
同步硝化反硝化的途径
由于硝化菌的好氧特性,有可能在曝气池中实现SND。实际上,很早以前人们就发现了曝气池中氮的非同化损失(其损失量随控制条件的不同约在10%~20%左右),对SND的研究也主要围绕着氮的损失途径来进行,希望在不影响硝化效果的情况下提高曝气池的脱氮效率。
①利用某些微生物种群在好氧条件下具有反硝化的特性来实现SND。研究结果表明,Thiosphaera、Pseadonmonasnautica、Comamonossp.等微生物在好氧条件下可利用NOX-N进行反硝化。如果将硝化菌和反硝化菌置于同一反应器(曝气池)内混合培养,则可达到单个反应器的同步硝化反硝化。尽管这些微生物的纯培养结果令人满意,但目前普遍认为离实际应用尚有距离,主要原因是实际污泥中这些菌群所占份额太小。
②利用好氧活性污泥絮体中的缺氧区来实现SND。通常曝气池中的DO维持在1~2mg/L,活性污泥大小具有一定的尺度,由于扩散梯度的存在,在污泥颗粒的内部可能存在着一个缺氧区,从而形成有利于反硝化的微环境。以往对曝气池中氮的损失主要以此解释,并被广泛接受。如果污泥颗粒内部厌氧区增大,反硝化效率就相应提高。
大量研究结果表明,活性污泥的SND主要是由污泥絮体内部缺氧产生。要实现高效率的SND,关键是如何在曝气条件下(不影响硝化效果)增大活性污泥颗粒内部的缺氧区以实现反硝化。要达到这一目的,有两种途径可供选择,即减小曝气池内混合液的DO浓度和提高活性污泥颗粒的尺度。
降低曝气池的DO浓度,即减小了O2的扩散推动力,可在不改变污泥颗粒尺度的条件下在其内部形成较大的缺氧区。丹麦BioBalance公司发明的SymBio工艺即建立在此理论基础之上(曝气池DO维持在1mg/L以下),但在低DO浓度下硝化菌的活性将会降低,且极易形成诸如Sphaeroticulenatans/1701和H.Hydrossis之类的丝状菌膨胀。因此,提高SND活性污泥颗粒的尺度,在不影响硝化效率的前提下达到高效的SND可能是佳选择。然而,由于曝气池中气泡的剧烈扰动作用,活性污泥颗粒在曝气条件下很难长大,因此限制了活性污泥法SND效率的提高。
工艺特点
1、本工艺在系统上可以称为简单的同步脱氮除磷工艺,总水力停留时间少于其他类工艺;
2、在厌氧(缺氧)、好氧交替运行条件下,丝状菌不能大量增殖,不易发生污泥丝状膨胀,SVI值一般小于100;
3、污泥含磷高,具有较高肥效;
4、运行中勿需投药,两个A段只用轻轻搅拌,以不增加溶解氧为度,运行费用低;
工艺流程
污水由排水系统收集后,进入污水处理站的格栅井,去除颗粒杂物后,进入调节池,进行均质均量,调节池中设置预曝气系统,再经液位控制仪传递信号,由提升泵送至初沉池沉淀,废水自流至*生物接触氧化池,进行酸化水解和硝化反硝化,降低有机物浓度,去除部分氨氮,然后入流O级生物接触氧化池进行好氧生化反应,在此绝大部分有机污染物通过生物氧化、吸附得以降解,出水自流至二沉池进行固液分离后,沉淀池上清液流入消毒池,经投加氯片接触溶解,杀灭水中有害菌种后达标外排。 由格栅截留下的杂物定期装入小车倾倒至垃圾场,二沉池中的污泥部分回流至*生物处理池,另一部分污泥至污泥池进行污泥消化后定期抽吸外运,污泥池上清液回流至调节池再处理。

 

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
拨打电话
在线留言