山东明基环保设备有限公司

主营产品: 地埋一体化污水处理设备溶气气浮机一体化净水设备加药装置二氧化氯发生器板框压滤机厌氧反应器

6

联系电话

15963635951

您现在的位置: 山东明基环保设备有限公司>>厌氧反应器>>IC厌氧反应器>> 强效可靠IC厌氧反应器

加药装置

二氧化氯发生器

污水处理设备

厌氧反应器

气浮机

压滤机

泵站

净水设备

刮吸泥机

生物滤池

恒压供水设备

过滤器

次氯酸钠发生器

公司信息

人:
杨经理
话:
86-0536-8120588
机:
15963635951
真:
86-0536-8120588
址:
山东省潍坊市奎文区幸福街316号1号楼3-401(住宅作为住所)
编:
址:
www.sdmjhb.com
铺:
https://www.hbzhan.com/st606331/
给他留言
强效可靠IC厌氧反应器
强效可靠IC厌氧反应器
参考价 面议
具体成交价以合同协议为准
  • 型号
  • 品牌 明基环保
  • 厂商性质 生产商
  • 所在地 潍坊市

更新时间:2019-08-15 15:27:43浏览次数:208

联系我们时请说明是环保在线上看到的信息,谢谢!

【简单介绍】
强效可靠IC厌氧反应器性好:利用二级UASB串联分级厌氧处理,可以补偿厌氧过程中K s高产生的不利影响。Van Lier在1994年证明,反应器分级会降低出水VFA浓度,延长生物停留时间,使反应进行稳定。

 强效可靠IC厌氧反应器

 按功能划分,反应器由下而上共分为5个区:混合区、1厌氧区、2厌氧区、沉淀区和液分离区。

  1. 混合区:反应器底部进水、颗粒污泥和液分离区回流的泥水混合物效地在此区混合。
  2. 1厌氧区:混合区形成的泥水混合物进入该区,在高浓度污泥下,大部分机物转化为沼。混合液上升流和沼的剧烈扰动使该反应区内污泥呈膨胀和流化状态,加强了泥水表面接触,污泥由此而保持着高的活性。随着沼产量的增多,一部分泥水混合物被沼提升至部的液分离区。
  3. 液分离区:被提升的混合物中的沼在此与泥水分离并导出处理系统,泥水混合物则沿着回流管返回到下端的混合区,与反应器底部的污泥和进水充分混合,实现了混合液的内部循环。
  4. 2厌氧区:经1厌氧区处理后的废水,除一部分被沼提升外,其余的都通过三相分离器进入2厌氧区。该区污泥浓度较低,且废水中大部分机物已在1厌氧区被降解,因此沼产生量较少。沼通过沼管导入液分离区,对2厌氧区的扰动很小,这为污泥的停留提供了利条件。
  5. 沉淀区:2厌氧区的泥水混合物在沉淀区进行固液分离,上清液由出水管走,沉淀的颗粒污泥返回2厌氧区污泥床。

优点

    IC 反应器的构造及其工作原理决定了其在控制厌氧处理影响因素方面比其它反应器更具优点。

    (1)容积负荷高:IC反应器内污泥浓,微生物量大,且存在内循环,传质效

好,进水机负荷可过普通厌氧反应器的3倍以上。

   (2)节省投资和占地面积:IC 反应器容积负荷率高出普通UASB 反应器3倍左右,其体积相当于普通反应器的1/4—1/3 左右,大大降低了反应器的基建投资;而且IC反应器高径比很大(一般为4—8),所以占地面积少。

   (3)抗冲击负荷:处理低浓度废水(COD=2000—3000mg/L)时,反应器内循环流量可达进水量的2—3 倍;处理高浓度废水(COD=10000—15000mg/L)时,内循环流量可达进水量的10—20倍。大量的循环水和进水充分混合,使原水中的害物质得到充分稀释,大大降低了毒物对厌氧消化过程的影响。

   (4)抗低温:温度对厌氧消化的影响主要是对消化速率的影响。IC反应器由于含大量的微生物,温度对厌氧消化的影响变得不再突出和严重。通常IC反应器厌氧消化可在常温条件(20—25 ℃)下进行,这样减少了消化保温的困难,节省了能量。

   (5)具缓冲pH值的能力:内循环流量相当于1 厌氧区的出水回流,可利用COD转化的碱度,对pH值起缓冲,使反应器内pH值保持好的状态,同时还可减少进水的投碱量。

   (6)内部自动循环,不必外加动力:普通厌氧反应器的回流是通过外部加压实现的,而IC 反应器以自身产生的沼作为提升的动力来实现混合液内循环,不必设泵强制循环,节省了动力消耗。

   (7)性好:利用二级UASB串联分级厌氧处理,可以补偿厌氧过程中K s高产生的不利影响。Van Lier在1994年证明,反应器分级会降低出水VFA浓度,延长生物停留时间,使反应进行稳定。

   (8)启动周期短:IC反应器内污泥活性高,生物增殖快,为反应器快速启动提供利条件。IC反应器启动周期一般为1~2个月,而普通UASB启动周期长达4~6个月。

   (9)沼利用价值高:反应器产生的生物纯,CH4为70%~80%,CO2为20%~30%,其它机物为1%~5%,可作为燃料加以利用

IC厌氧反应器可

发展历程

    在相当长的一段时间内,厌氧消化在理论、技术和上远远落后于好氧生物处理的发展。20世纪60年代以来,能源短缺问题日益突出,这促使人们对厌氧消化工艺进行重新认识,对处理工艺和反应器结构的设计以及甲烷回收进行了大量研究,使得厌氧消化技术的理论和实践都了很大进步,并得到。厌氧消化具下列优点:需搅拌和供氧,动力消耗少;能产生大量含甲烷的沼,是很好的能源物质,可用于发电和家庭燃;可高浓度进水,保持高污泥浓度,所以其溶剂机负荷达到规准仍需要进一步处理;初次启动时间长;对温度要求较高;对毒物影响较敏感;遭破坏后,恢复期较长。污水厌氧生物处理工艺按微生物的凝聚形态可分为厌氧活性污泥法和厌氧生物膜法。厌氧活性污泥法包括普通消化池、厌氧接触消化池、升流式厌氧污泥床(upflow anaerobic sludge blanket,UASB)、厌氧颗粒污泥膨胀床(EGSB)等;厌氧生物膜法包括厌氧生物滤池、厌氧流化床和厌氧生物转盘。

厌氧反应四个阶段

水解反应
    水解可定义为复杂的非溶解性的聚合物被转化成简单的溶解性单体和二聚体的过程。水解反应针对不同的废水类型差别很大,这要取决于胞外酶能否效的接触到底物。因此,大的颗粒比小颗粒底物要难降解很多,比如造纸废水、印染废水和制药废水的木质素、大分子纤维素就很难水解。
水解速度的可由以下动力学方程加以描述:
ρ=ρo/(1+Kh.T)
ρ ——可降解的非溶解性底物浓度(g/l);
ρo———非溶解性底物的初始浓度(g/l);
Kh——水解常数(d-1);
T——停留时间(d)。

    强效可靠IC厌氧反应器

    发酵酸化反应
         发酵可以被定义为机化合物既作为电子受体也作为电子供体的生物降解过程,在此过程中机物被转化成以挥发性脂肪酸为主的末端产物。酸化过程是由大量的、多种多样的发酵细菌来完成的,在这些细菌中大部分是专性厌氧菌,只1%是兼性厌氧菌,但正是这1%的兼性菌在反应器受到氧的冲击时,能迅速消耗掉这些氧,保持废水低的氧化还原电位,同时也保护了产甲烷菌的条件。
    产乙酸反应
        发酵阶段的产物挥发性脂肪酸VFA在产乙酸阶段进一步降解成乙酸,其常用反应式如以下几种:
    CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG’0=-4.2KJ/MOL
    CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG’0=9.6KJ/MOL
    CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG’0=48.1KJ/MOL
    CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG’0=76.1KJ/MOL
    4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG’0=-2.9KJ/MOL
    2HCO3-+4H2+H+->CH3COO-+4H2O ΔG’0=-70.3KJ/MOL 

         从上面的反应方程式可以看出,乙醇、丁酸和丙酸不会被降解,但由于后续反应中氢的消耗,使得反应能够向右进行,在一阶段,氢的平衡显得更加重要,同时后续的产甲烷过程为这一阶段的转化提供能量。实际上这一阶段和前面的发酵阶段都是由同一类细菌完成,都在细菌体内进行,并且产物放到水体中,界限并没十分清楚,在设计反应器时,没足够的理由把他们分开。
    产甲烷反应
        在厌氧反应中,大约70%左右的甲烷由乙酸歧化菌产生,这也是这几个阶段中遵循莫诺方程反应的阶段。另一类产生甲烷的微生物是由氢和二氧化碳形成的。在正常条件下,他们大约占30%左右。其中约一般的嗜氢细菌也能利用甲酸产生甲烷。主要的产甲烷过程反应:
    CH3COO-+H2O->CH4+HCO3- ΔG’0=-31.0KJ/MOL
    HCO3-+H++4H2->CH4+3H2O ΔG’0=-135.6KJ/MOL
    4CH3OH->3CH4+CO2+2H2O ΔG’0=-312KJ/MOL
    4HCOO-+2H+->CH4+CO2+2HCO3- ΔG’0=-32.9KJ/MOL

     水解酸化池与厌氧反应器的区别

        在污水处理工艺设计上,我们经常看到在好氧的前端设计厌氧池,时设计的是水解酸化池,时两者连用,一部分从业者对两者的概念区别了解的不是很清楚,造成设计、方面的误差,从而影响到处理效果。
    水解酸化池
        水解酸化池与厌氧反应器中都水解酸化步骤,从原理上讲,水解(酸化)是厌氧消化过程的*、二两个阶段。但两者的不同,其适应条件也不同,因此是两种不同的处理方法。
    两种工艺的
        水解酸化池的主要是将原水中的非溶解态机物转变为溶解态机物,将难生物降解物质转变为易生物降解物质,提高废水的可生化性,以利于后续的好氧生物处理。

    厌氧发生器
        在厌氧反应器过程中水解、酸化的是为厌氧反应器消化过程中的甲烷化阶段提供基质。
    因此,尽管水解(酸化)-好氧处理工艺中的水解(酸化)段和厌氧反应器消化工艺中的产酸过程均产生机酸,但是由于两者的处理的不同,各自的环境和条件着明显的差异,主要表现在以下几个方面。  
    Eh不同
        在混合厌氧消化系统中,由于完成水解、酸化的微生物和产甲烷微生物共处于同一反应器中,整个反应器的氧化还原电位Eh的控制必须先满足对Eh要求严格的甲烷菌,一般为一300mV以下,因此。系统中的水解(酸化)微生物也是在这一电位值下工作的。而两相厌氧消化系统中,产酸相的氧化还原电位一般控制在一100mV一一300mV之间。据研究,水解(酸化)一好氧处理工艺中的水解(酸化)段为——特例的兼性过程,只要置Eh控制在+50mv以下,该过程即可顺利进行。
    pH值不同
        在混合厌氧消化系统中,消化液的pH值控制在甲烷菌生氏的*pH范围,一般为6.8—7.2。而在两相厌氧消化系统中,产酸相的pH值一般控制在6.0一6.5之间,pH降低时,尽管产酸的速率增大,但形成的机酸形态将发生变化,丙酸的相对含量增大,而丙酸对后续的甲烷相中的产甲烷菌会产生强烈的抑制。对于水解(酸化)一好氧处理系统来说,由于后续处理为好氧氧化,不存在丙酸的抑制问题,一般pH维持在5.5—6.5之间。
    温度不同
        两种工艺对温度的控制也不同,通常混合厌氧消化系统以及两相厌氧消化系统的温度均严格控制,要么中温消化(30一35),要么高温消化(50一55)。而水解(酸化)一好氧处理工艺中的水解(酸化)段对工作温度殊要求,通常在常温下,也可获得较为满意的水解(酸化)效果。

       详细问题您可以咨询山东明基设备有限公司的技术人员。山东明基设备有限公司是一家集产品的研发、、工程的设计、施工、、运营管理于一体的新兴企业。主要从事项目咨询、水处理工程设计、工程施工及总承包、净水剂的技术研发、机电产品、化工产品及二氧化氯发生设备的、设备等。



    产品对比 二维码

    扫一扫访问手机商铺

    对比框

    在线留言