上海士锋生物科技有限公司
中级会员 | 第14年

13127537090

当前位置:首页   >>   资料下载   >>   生物打印水凝胶类器官,指导组织规模的自组织

标准品
培养基
培养基原料 霍乱弧菌诊断血清 大肠艾希氏菌诊断血清 志贺氏菌属诊断血清 沙门氏菌属诊断血清 标准血清,诊断血清 抗生素药敏纸片 微生物配套试剂 微生物生化管 管装培养基 即用型液体培养基 一次性培养基平板 显色培养基 临床培养基 菌种保存培养基 四环素检定、厌氧亚硫酸盐还原杆菌检测培养基 维生素检测培养基 一次性卫生用品卫生检测培养基 罐头食品商业无菌检测培养基 饮用水及水源检测培养基 药品、生物制品检测培养基 化妆品检测培养基 动物细胞培养基 啤酒检验培养基 军团菌检测培养基 支原体检测培养基 小肠结肠炎耶尔森氏菌检验培养基 弯曲杆菌检验培养基 产气荚膜梭菌、肉毒梭菌、厌氧菌检验培养基 阪崎肠杆菌检验培养基 溶血性链球菌检测培养基 李斯特氏菌检测培养基 弧菌检测培养基 乳酸菌、双歧杆菌检测培养基 酵母、霉菌检测培养基 检测培养基 沙门氏菌、志贺氏菌检验培养基 大肠菌群、粪大肠菌群、大肠杆菌及肠杆菌科检测培养基 细菌总数检测,增菌培养基
抗体
生物试剂
细胞
菌株
血清
细胞分离试剂
试剂盒

生物打印水凝胶类器官,指导组织规模的自组织

时间:2021-3-2阅读:673
分享:
  • 提供商

    上海士锋生物科技有限公司
  • 资料大小

    48.3KB
  • 资料图片

  • 下载次数

    51次
  • 资料类型

    PNG 图片
  • 浏览次数

    673次
点击免费下载该资料

 

近日,美国加州大学旧金山分校Zev J. Gartner教授团队上发表Guiding tissue-scale self-organization一文。该文观点评论解析如下:

要点:一种生物打印方法,利用形成类器官的干细胞作为水凝胶中的活泼墨水,可指导组织规模的自组织产生更现实的胃肠道和血管组织构造。

类器官是盘中的微型干细胞衍生组织,通过自组织形成体内类似的细颗粒组织结构和细胞异质性。这些功能为发展和疾病进展的机制提供了新的见识。然而,类器官不能概括在体内发现的许多粗粒度的结构特征,这些特征的长度范围从几百微米到几厘米。这自然导致了一个问题,即要使类器官模型的应用扩展到组织的这些更大范围的特征,必须进行哪些开发。为了回答这个问题,Matthias Lutolf及其同事报告了一种简单易用的生物打印的方法,该方法使用形成类器官的细胞墨水。他们的方法为将生物打印机提供的粗粒度结构控制与类器官自组织产生的细粒度结构控制相结合奠定了基础(doi.org/10.1038/s41563-020-00803-5)。

类器官作为基础研究,再生医学和疾病建模工具的承诺源自其自组织过程中自发产生的复杂组织结构。但是,允许组织自组织而不受周围胚胎提供的约束的结果是,组织通常以意想不到的或不受控制的方式形成。在三维细胞外基质(ECM)水凝胶(例如重构的基底膜Matrigel)中培养类器官,为类器官的自组织提供了许多重要的机械和生物学线索。然而,所得的类器官可以采用由随机过程以及微环境和细胞异质性引起的各种尺寸,形状和细胞类型组成。此外,许多器官在跨越数百微米到厘米的长度尺度上显示出复杂的结构。自组织的这些特征是由于空间附近的细胞之间的相互作用(如当前的类器官培养物中发生的)以及类器官培养物中缺少的来自周围胚胎组织的提示而产生的。通过将类器官植入到活体动物中来重新引入这种线索已被用于促进大规模组织结构的发展。然而,这些过程在类器官培养中概括仍是挑战。因此,人们非常有兴趣采用多种组织工程学自上而下的工具(包括微图案制作,生物打印和光刻等)来在时间和空间上排列其他组织类型,以更好地指导类器官的自组织。将自上而下的制造方法的优势与活细胞的自下而上的自组织能力相结合对于实现构建更复杂和功能更强大的组织和器官的潜力至关重要。

在此概念验证中,Lutolf及其同事证明了在由和显微镜构建的简单生物打印机挤出后,由解离的类器官祖细胞,间充质细胞和内皮细胞构建的厘米级组织特征的生成(图1a)。显微镜使用载物台控件和实时视觉反馈提供精确的移动和定位,从而使用户可以通过肉眼微调挤压参数。细胞在培养基中的致密悬浮液会在凝固前的几分钟内直接印到液体ECM凝胶中。作者可以控制细胞密度,喷嘴大小和挤出速度,以调节组织的形态。打印的组织初是简单的线条和悬浮在ECM凝胶中的点,随着它们的生长会凝结成连续的组织,然后随着它们开始自组织成类器官而形成微观结构(图1b)。肠类器官和内皮细胞均形成管腔,而肠类器官又沿管的外表面形成隐窝结构,类似于散布在整个小肠中的隐窝。通过使用不同的细胞墨水顺序使用此方法,还可以生成具有多种细胞类型的更复杂的组织。在一项特别引人注目的演示中,从肠和胃中分离出的*干细胞被组合在一起,形成了混合的胃和肠类器官,模仿了具有特定器官特征(如平滑的胃区和隐窝覆盖的肠区)的胃肠道。使用类似于近研究中发表的策略,作者还通过在特定位置挤出基质细胞的液滴,将不同的细类型依次沉积到同一基质中。基质细胞的存在导致管腔直径的增加,从而允许肠类器官的灌注。

该报告为类器官生物学家提供了一种新方法,该方法依赖于自动化显微镜和,这在大多数现代实验室中都很容易获得。此外,作者使用见的实验室基质(I型胶原和Matrigel)验证了该方法。与以前的生物打印技术不同,该技术已经将仅细胞生物墨水打印到水凝胶支持浴或合成水凝胶中,与标准ECM的兼容性允许从以前为其他类器官开发的优化条件更轻松地过渡到此生物打印方式。研究其他类器官中的大规模形态发生和空间信号传导将是一个令人兴奋的下一步。然而,在生物打印机提供的额外限制下,是否需要额外的优化来实现类器官自组织的全部潜力还有待观察。同样,生物打印机如何才能有助于大脑,肾脏和乳腺类器官(尤其是其他器官)的形态受控,还有待进一步研究。类似于使用微生理系统或单片器官的方法,将这些文化与灌注系统连接的标准化方法,例如同一研究小组近发布的可灌注类器官,也将是未来发展的重要领域。类器官生物学与组织工程学的不断增长的交集,继续为研究,概括和控制器官发育的复杂特征提供了令人兴奋的机会

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
拨打电话
在线留言