上海士锋生物科技有限公司
中级会员 | 第14年

13127537090

当前位置:首页   >>   资料下载   >>   发现tRNA衍生的小RNA在植物抗真菌防卫反应中的功能

标准品
培养基
培养基原料 霍乱弧菌诊断血清 大肠艾希氏菌诊断血清 志贺氏菌属诊断血清 沙门氏菌属诊断血清 标准血清,诊断血清 抗生素药敏纸片 微生物配套试剂 微生物生化管 管装培养基 即用型液体培养基 一次性培养基平板 显色培养基 临床培养基 菌种保存培养基 四环素检定、厌氧亚硫酸盐还原杆菌检测培养基 维生素检测培养基 一次性卫生用品卫生检测培养基 罐头食品商业无菌检测培养基 饮用水及水源检测培养基 药品、生物制品检测培养基 化妆品检测培养基 动物细胞培养基 啤酒检验培养基 军团菌检测培养基 支原体检测培养基 小肠结肠炎耶尔森氏菌检验培养基 弯曲杆菌检验培养基 产气荚膜梭菌、肉毒梭菌、厌氧菌检验培养基 阪崎肠杆菌检验培养基 溶血性链球菌检测培养基 李斯特氏菌检测培养基 弧菌检测培养基 乳酸菌、双歧杆菌检测培养基 酵母、霉菌检测培养基 检测培养基 沙门氏菌、志贺氏菌检验培养基 大肠菌群、粪大肠菌群、大肠杆菌及肠杆菌科检测培养基 细菌总数检测,增菌培养基
抗体
生物试剂
细胞
菌株
血清
细胞分离试剂
试剂盒

发现tRNA衍生的小RNA在植物抗真菌防卫反应中的功能

时间:2021-11-19阅读:911
分享:
  • 提供商

    上海士锋生物科技有限公司
  • 资料大小

    29.3KB
  • 资料图片

  • 下载次数

    27次
  • 资料类型

    PNG 图片
  • 浏览次数

    911次
点击免费下载该资料
转运RNA(tRNA)是一种由76-90个核苷酸(nt)组成的RNA分子,它的经典功能是在蛋白质翻译过程中负责将mRNA序列转译为氨基酸序列。tRNA具有三叶草形的二级结构,这种结构由氨基酸接受茎、D(二氢尿苷酸)茎环、反密码子茎环和TψC茎环(ψ代表假尿苷酸)组成。近年来的研究发现,在人和动植物中,tRNAs可被切割加工,产生多种小RNAs。当

 

转运RNA(tRNA)是一种由76-90个核苷酸(nt)组成的RNA分子,它的经典功能是在蛋白质翻译过程中负责将mRNA序列转译为氨基酸序列。tRNA具有三叶草形的二级结构,这种结构由氨基酸接受茎、D(二氢尿苷酸)茎环、反密码子茎环和TψC茎环(ψ代表假尿苷酸)组成。近年来的研究发现,在人和动植物中,tRNAs可被切割加工,产生多种小RNAs。当切割位于反密码子环时,产生5′和3′ tRNA半分子(tRNA halves);当切割位于TψC环时,产生3′ tRNA衍生的小RNA(3′ tsRNA);而当切割发生在D环、D茎或5′反密码子茎时,则产生5′ tRNA衍生的小RNA (5′ tsRNA)。

在植物中,5′ tRNA half和5′ tsRNA是丰度的两类tRNA衍生小RNAs,但其产生机制以及生物学功能尚不明确。清华大学生命科学学院戚益军课题组利用新开发的小RNA测序方法,系统分析了模式植物拟南芥中5′ tRNA halves和5′ tsRNAs,并发现5′ tsR-Ala通过调节靶基因CYP71A13的表达和植保素的合成,从而调控植物抗真菌防卫反应。

相关研究论文“一个5′ tRNA-Ala衍生的小RNA调控植物抗真菌防卫反应" (A 5′ tRNA-Ala-derived small RNA regulates anti-fungal defense in plants)在线发表在《中国科学》(SCIENCE CHINA Life Sciences)上。

在这项研究中,戚益军课题组首先针对tRNA衍生小RNAs的特征,开发了一种基于RtcB连接酶的小RNA文库构建及测序方法(RtcB sRNA-seq),该方法能够同时捕捉并定量区分末端为3′羟基和3′磷酸/环磷酸的小RNAs。利用RtcB sRNA-seq,系统鉴定分析了拟南芥幼苗中5′ tRNA halves和5′ tsRNAs,发现80个tRNAs可产生近千个5′ tRNA halves和5′ tsRNAs,其中tRNA-Ala、tRNA-Gly和tRNA-Glu衍生的5′ tRNA halves和5′ tsRNAs丰度。tRNA-Ala主要产生19-nt的 5′ tsR-Ala,tRNA-Gly主要产生18-nt的5′ tsR-Gly和35-nt 5′ tRNA-Gly half,而tRNA-Glu则主要产生15-nt的5′ tsR-Glu和35-nt 5′ tRNA-Glu half(图1)。

该研究进一步着重探索了5′ tsRNAs的产生机制及生物学功能。通过分析RNase T2家族RNA内切酶RNS1至RNS5突变体中5′ tsRNAs的积累,发现RNS1和RNS3负责产生包括5′ tsR-Ala在内的众多5′ tsRNAs。为了研究5′ tsRNAs的生物学功能,利用RNA测序方法分析了rns1和rns3突变体的基因表达谱,发现突变体中大量参与植物抗真菌的茉莉酸信号通路基因上调表达。灰霉菌接种实验表明,与野生型植物相比,rns1和rns3突变体更抗灰霉菌侵染(图2)。这些结果说明RNS1和RNS3可通过切割tRNAs产生5′ tsRNAs,负调控植物对灰霉菌的抗性。

该研究最后阐明了其中一个丰度的5′ tsRNA,19-nt 5′ tsR-Ala的功能。发现5′ tsR-Ala能够与AGO1结合,并切割与其序列互补的靶标CYP71A13 mRNA,从而负调控CYP71A13基因的表达。CYP71A13编码植保素(植物产生的一种抗菌分子)合成途径中的一个关键酶。利用短串联模拟靶标(STTM)技术沉默5′ tsR-Ala,发现在5′ tsR-Ala沉默的植物中, CYP71A13表达上升,植保素含量增加,对灰霉菌抗性增强。特别有意思的是,研究发现植物在受到灰霉菌侵染时,包括5′ tsR-Ala在内的众多5′ tsRNA积累水平下降。

根据上述结果,该研究提出了植物中5′ tsR-Ala调控植物抗真菌防卫反应的工作模型(图3)。在没有真菌侵染的情况下,植物通过RNS1和RNS3切割tRNA-Ala生成5′ tsR-Ala,5′ tsR-Ala与AGO1结合,切割CYP71A13 mRNA,从而抑制植保素合成和植物对真菌的防卫反应;而当真菌入侵时,植物通过下调5′ tsR-Ala的产生水平,增强CYP71A13的表达和植保素的合成,从而激活植物的防卫反应


会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
拨打电话
在线留言