上海五久自动化设备有限公司
中级会员 | 第14年

13601713396

热电偶
COD检测仪
温度变送器
双金属温度计
热电阻
声光电报警器
上海减压器厂减压器
振荡器
干燥箱
培养箱
净化工作台/安全柜
水浴锅/水温箱/低温水槽
灭菌器
蒸馏水器
仪器仪表
探头 流量计 一氧化碳检测仪 红外热成像仪 频谱分析仪 直流稳定电源 高斯计 标准通用型磁通门计 电流探头 计数器 电阻测试仪 电桥 磁场处理电磁铁 波形发生器 电磁波测试计 数控恒流源 功率放大器 半导体管特性图示仪 标准电池 双填充柱进样器+双氢火焰检测器 双填充柱进样器+热导检测器 毛细管柱进样器+热导检测器 智能崩解仪 电表 全自动部份收集器 全自动试验支架 粉尘仪 高功能数显测力仪 经济型数显测力仪 检测器 比色计 张力仪 分流器 气候箱 搅拌机 摇床 紫外分析仪 闪点和燃点试验器 电位差计 交/直流标准电阻箱 指针式直流检流计 除湿机 电流互感器 超声波清洗器 温度记录仪 药物溶出仪 采样器 紫外可见分光光度计 数显高速分散均质机 箱式电阻炉 片剂脆碎度测定仪 智能溶出试验仪 密度计 逻辑分析仪 光度计 澄明度检测仪 小型包衣机 恒流泵 消毒箱 恒温恒湿箱 钳表 智能片剂硬度仪 熔点仪 电磁阀 智能微粒检测仪 电子天平 旋转蒸发器 测定仪 试验箱 高灵敏度热导检测器 万用表 气相色谱仪 氮磷检测器 油压缓冲器 电弧发生器 荧光分光光度计 信号分析仪 看谱镜 气体检测仪 信号发生器 功率计 压力表 普朗克常数 搅拌器 扭矩仪 铝盒 可见分光光度计 电力测试仪 自动液相色谱分离层析仪 有源探头 差分探头 无源电压探头 热电阻模拟器 风淋室 函数信号发生器 数显推拉计 毫伏表 数字微欧计 交直流钩表 直流电阻箱 水分测定仪 双层玻璃反应器 溶出度测试仪 声级计/噪音计 超声波探伤仪 转速表/频闪仪 粘度计 分析天平 粗糙度仪 风速仪表计|风温|风量|叶轮|热敏 示波器 里氏硬度计/邵氏硬度计/洛氏硬度计 温度表 红外线测温仪 测厚仪 测振仪 金属探测器
开关
控制器
低压电器
跑偏开关
拉绳开关
光控开关
时控开关
塑壳断路器
磁力起动器
继电器
接触器
光纤传感器
色标传感器
位移传感器
光电传感器
光电开关
接近开关
气源处理器
磁性开关
无线电监测接收机
阻旋式料位控制器
噪声信号发生器

离心泵调节方式分析

时间:2012/10/13阅读:2053
分享:

离心泵调节方式与能耗分析
  通常,所选离心泵的流量、压头可能会和管路中要求的不一致,或由于生产任务、工艺要求发生变化,此时都要求对泵进行流量调节,实质是改变离心泵的工作点。离心泵的工作点是由泵的特性曲线和管路系统特性曲线共同决定的,因此,改变任何一个的特性曲线都可以达到流量调节的目的。


    目前,离心泵的流量调节方式主要有调节阀控制、变速控制以及泵的并、串联调节等。由于各种调节方式的原理不同,除有自己的优缺点外,造成的能量损耗也不一样,为了寻求*、能耗zui小、zui节能的流量调节方式,必须全面地了解离心泵的流量调节方式与能耗之间的关系。

1、泵流量调节的主要方式
1.1 改变管路特性曲线
改变离心泵流量zui简单的方法就是利用泵出口阀门的开度来控制,其实质是改变管路特性曲线的位置来改变泵的工作点。
1.2 改变离心泵特性曲线
根据比例定律和切割定律,改变泵的转速、改变泵结构(如切削叶轮外径法等)两种方法都能改变离心泵的特性曲线,从而达到调节流量(同时改变压头)的目的。但是对于已经工作的泵,改变泵结构的方法不太方便,并且由于改变了泵的结构,降低了泵的通用性,尽管它在某些时候调节流量经济方便[1],在生产中也很少采用。这里仅分析改变离心泵的转速调节流量的方法。


    从图1中分析,当改变泵转速调节流量从Q1下降到Q2时,泵的转速(或电机转速)从n1下降到n2,转速为n2下泵的特性曲线Q-H与管路特性曲线He=H0+G1Qe2(管路特曲线不变化)交于点A3(Q2,H3),点A3为通过调速调节流量后新的工作点。此调节方法调节效果明显、快捷、安全可靠,可以延长泵使用寿命,节约电能,另外降低转速运行还能有效的降低离心泵的汽蚀余量NPSHr,使泵远离汽蚀区,减小离心泵发生汽蚀的可能性[2]。缺点是改变泵的转速需要有通过变频技术来改变原动机(通常是电动机)的转速,原理复杂,投资较大,且流量调节范围小。
1.3 泵的串、并连调节方式
当单台离心泵不能满足输送任务时,可以采用离心泵的并联或串联操作。用两台相同型号的离心泵并联,虽然压头变化不大,但加大了总的输送流量,并联泵的总效率与单台泵的效率相同;离心泵串联时总的压头增大,流量变化不大,串联泵的总效率与单台泵效率相同。

2、不同调节方式下泵的能耗分析
在对不同调节方式下的能耗分析时,文章仅针对目前广泛采用的阀门调节和泵变转速调节两种调节方式加以分析。由于离心泵的并、串联操作目的在于提高压头或流量,在化工领域运用不多,其能耗可以结合图2进行分析,方法基本相同。
2.1 阀门调节流量时的功耗
离心泵运行时,电动机输入泵轴的功率N为:
N=vQH/η
式中N——轴功率,w;
Q——泵的有效压头,m;
H——泵的实际流量,m3/s;
v——流体比重,N/m3;
η——泵的效率。
当用阀门调节流量从Q1到Q2,在工作点A2消耗的轴功率为:
NA2=vQ2H2/η
vQ2H3——实际有用功率,W;
vQ2(H2-H3)——阀门上损耗得功率,W;
vQ2H2(1/η-1)——离心泵损失的功率,W。
2.2 变速调节流量时的功耗
在进行变速分析时因要用到离心泵的比例定律,根据其应用条件,以下分析均指离心泵的变速范围在±20%内,且离心泵本身效率的变化不大[3]。用电动机变速调节流量到流量Q2时,在工作点A3泵消耗的轴功率为:
NA3=vQ2H3/η
同样经变换可得:
NA3=vQ2H3+vQ2H3(1/η-1) (2)
式中 vQ2H3——实际有用功率,W;
vQ2H3(1/η-1)——离心泵损失的功率,W。
2.3 能耗对比分析

3、结论
对于目前离心泵通用的出口阀门调节和泵变转速调节两种主要流量调节方式,泵变转速调节节约的能耗比出口阀门调节大得多,这点可以从两者的功耗分析和功耗对比分析看出。通过离心泵的流量与扬程的关系图,可以更为直观的反映出两种调节方式下的能耗关系。
    通过泵变速调节来减小流量还有利于降低离心泵发生汽蚀的可能性。当流量减小越大时,变速调节的节能效率也越大,即阀门调节损耗功率越大,但是,泵变速过大时又会造成泵效率降低,超出泵比例定律范围,因此,在实际应用时应该从多方面考虑,在二者之间综合出*的流量调节方法。
 

会员登录

×

请输入账号

请输入密码

=

请输验证码

收藏该商铺

X
该信息已收藏!
标签:
保存成功

(空格分隔,最多3个,单个标签最多10个字符)

常用:

提示

X
您的留言已提交成功!我们将在第一时间回复您~
拨打电话
在线留言