hbzhan内容导读:对当前国内离心通风机普遍存在的内部气流短路间隙过大的问题,进行了一次严格的对比测试,结果是:间隙由2mm增大到19mm,就使有效功率降低了一半。*一项造成的能源损失大约等于输入功率的40%。现在国内正在生产和使用的离心通风机的间隙一般都大于19mm。对此作者提出了风机改造方案。
1测试方法和仪器
本次测试采取自由进口和管道出口装置类型(B类)。
除非是有条件的专门测试场所适于用孔板、文丘里等装置以外,一般的风机性能测试多用L形标准皮托管做传感器。但皮托管并不理想:风速不能大于40m/s,有的标明只能用于0~30m/s,精度也不高。现在市场上有数字式风速测量仪、流量测量仪,灵敏又方便,但其传感器还是皮托管。皮托管之所以不能用于高风速场合,主要是因为其静压测孔开在皮托管之外壁,当风速较高时,此处很难保留贴近管壁的滞留层,所以静压测不准。
本次测试所用的主要仪器是小管径全压测量管,用Φ3.0的无缝不锈钢圆管制作,其测量口一段逐渐缩小到直径2mm,从测量口到直角弯的直管长度为管径的20倍以上,并有专门的固定和调节装置,使用很方便。静压测孔单独开在被测风管壁,与全压管测量口处于同一横截面内。在测量点前后有足够长度的情况下,可以认为在同一个横截面上的各点静压相等。显示压力用玻璃管U形压力计。风机为4-72A-4.5#-7.5kW-2900r/min。风管为DN250的PVC管,长3.8m,测量点距进风端面2m,相当于8倍管直径。静压测孔直径约2.2mm,外管直径3mm。电压测量用数字式万用电表,电流测量用初级8匝的5倍电流互感器接数字电流表。
风管出风口的轴线上有一根螺杆,移动螺杆上的圆钢板就可以调节阀门开度。这次的阀门开度共设7档,圆钢板到出风口端面的距离分别是:0档、1档30mm、2档70mm、3档120mm、4档200mm、5档300mm和6档全开。
为了验证进风口与叶轮之间的间隙对风机性能的影响,这次为一个叶轮配制了2个不同的进风口,一个与叶轮的间隙为2mm,另一个为19mm。这样测试完一个后,只要换装一个进风口就可以再试第二个了。
数据处理
所用PVC管并不很圆,内径从241mm至245mm,截面积按直径243mm计算,而测量孔开在245mm的直径上。考虑到圆管中间和边缘可能流速有差别,将圆面积平均分为三等分,即中间一个圆及两个圆环。这三个部分的测量点都必须取在其内外等面积的等分线上。这样一来,实际上就是要将整个圆平均分成6等分,测量点分别设在第1、第3、第5个圆上。设这三个圆的半径分别是R1、R2、R3,大圆半径为R=122.5mm,则可推出:
R1=(1/6)0.5R=0.4082R=50.00mm
R2=(3/6)0.5R=0.7071R=86.62mm
R3=(5/6)0.5R=0.9129R=111.83mm
测量中,风管内的全压取全压管的读数,动压为全压与静压之差。空气温度和湿度都接近标准状态,直接取数计算,空气密度取1.2kg/m3。电动机的功率因素没有实测,就取其铭牌上的0.8。
动压、静压、全压分别标为pd、pj、pq,功率、输入功率、有效功率分别标为N、Nr、Ny,风速、风量、面积分别标为U、Q、S,电流、电压分别为I、V,则:
U=(2pd/1.2)0.5=1.291pd0.5(m/s)
Q=SU=0.7854×0.2432×3600U=166.968U(m3/h)
Ny=Qpq/3600000(kW)
Nr=1.732IV×cosφ
在全国离心通风机的装机容量和用电量,目前没有参考数据。估计装机容量和用电量大约都占到总量的1/10以上。按照这个比例,2010年全国发电量41413亿kWh,因为通风机间隙增大的原因平均浪费40%的电量,按0.5元/k·Wh计算,全国离心通风机因此而浪费的总电价值为828亿元/年。大量节约电能,就能减少以煤发电的环境污染,减少煤矿矿难。
风机质量大幅提高对使用风机场所提产降耗、改善环境也都大有裨益。