产品展厅收藏该商铺

您好 登录 注册

当前位置:
潍坊鲁川环保设备有限公司>>生活污水处理设备>>二级生化污水处理设备>>一体式二级生化污水处理系统

一体式二级生化污水处理系统

返回列表页
  • 一体式二级生化污水处理系统

  • 一体式二级生化污水处理系统

  • 一体式二级生化污水处理系统

收藏
举报
参考价 20000
订货量 1
具体成交价以合同协议为准
  • 型号
  • 品牌
  • 厂商性质 生产商
  • 所在地 潍坊市

在线询价 收藏产品 加入对比

更新时间:2020-05-08 11:13:41浏览次数:157

联系我们时请说明是环保在线上看到的信息,谢谢!

产品简介

处理量 8m³/h 加工定制
一体式二级生化污水处理系统在密闭的状态下,经过高压泵打入的污泥经过板框的挤压,使污泥内的水通过滤布排出,达到脱水目的。

详细介绍

一体式二级生化污水处理系统

一体式二级生化污水处理系统——生物处理

为分析好氧发酵产物的转化机理,以厂B4为例,其污泥处理工艺规模600 t/d,采用蘑菇渣作辅料,混合比例为回料∶原泥∶辅料=2∶1∶0?2,一次仓发酵14 d,二次仓发酵20 d,共计34 d(冬季),部分发酵产物再陈化1个月。表3为各采样点物料中蛋白质、多糖和腐殖酸含量的变化。分析可知,发酵过程蛋白质减量显著,多糖减量明显但不*,陈化产物中仍含有64.5 mg/gVS的多糖,这主要是由于辅料(蘑菇渣)的加入,引入的多糖(以纤维素为主)所致。从腐殖酸总量上来看,经过发酵和陈化后,腐殖酸增量28.0%。从腐殖酸组分上来看,原泥中的腐殖酸以富里酸为主(125.5 mg/gVS),经过与辅料和回料的调理后,混料的腐殖酸总量增加,这主要是辅料和回料中腐殖酸的贡献。经过一次发酵,蛋白质含量显著下降,富里酸含量显著增加,说明这一阶段是蛋白质的降解过程,也是富里酸的合成过程;经过二次发酵,蛋白质有略微地下降,富里酸几乎无增长,胡敏酸开始累积,说明二次发酵阶段是富里酸向胡敏酸的转化过程,即腐殖化过程;在后续长时间的陈化过程,胡敏酸大量累积,也证明好氧发酵需要足够长的时间来保证发酵效果。胡敏酸作为非水溶性的大分子腐殖酸,比富里酸的化学稳定性更好,在土壤中不易扩散和迁移,对土壤的保水保肥具有重要意义

同样,采用荧光光谱法分析厂B4在好氧发酵过程物质的降解与合成机理,测定得到的光谱图

与标准物质的图谱比对可得各荧光峰所代表的物质,并结合化学分析可知:

(1)污泥经过一次发酵后,类蛋白荧光峰(峰A)消失,腐殖化中间产物的荧光峰发生偏移(B1→B2),说明在一次发酵过程,类蛋白物质被降解,并转化为腐殖化中间产物(富里酸)。

(2)二次发酵后,富里酸(峰B2)含量减少,胡敏酸(峰C)含量增加,说明二次发酵是有机物腐殖化的过程,但产物中仍有大量中间产物(峰B2),说明

在有限的发酵时间内,腐殖化程度尚不*。

(3)在陈化过程,胡敏酸含量显著增加,可见陈化过程促进了富里酸向胡敏酸的转化,促进了有机物的腐殖化。经过长时间的陈化后,仅剩下类胡敏酸荧光峰(见图4e),说明好氧发酵产物经过一段时间的陈化,对进一步加强腐殖化过程是非常有必要的。

从各个厂的CI指数来看(见表2),除厂B2和B3外,其余各厂的CI指数均在5.0以上。由于多糖不具有荧光特性,而CI指数耦合了蛋白质和腐殖酸的相对含量,因此该指数的使用可避免外加碳源而导致降解率不准确的问题,从而准确、有效地判断发酵产物的稳定化水平。

为分析好氧发酵过程CI指数的变化规律,以厂B4为例,测定各采样点的CI指数如图4f。分析可知,经过两次发酵后,CI指数显著增加(CI=10.6),陈化后,CI指数激增至69.3。由此可见,无论是厌氧消化,还是好氧发酵,这一指数综合反映了物质的降解与合成,可用于污泥处理产物稳定化程度的判定。

生活污水处理设备施工顺序
组织流水施工,各段施工顺序为:
1、生活废水处理站:
挖土→人工清底→底板垫层→底板钢筋制安→止水带→底板模板(安装)→底板砼→(养护)→池壁钢筋制安→池壁模板安装→池壁砼→(养护)→拆模→池壁内抹1:2防水水泥砂浆抹面,20mm厚→盖板模板安装→盖板钢筋制安→盖板砼→(养护)→回填土(人工夯实)。
2、化粪池:
挖土→人工清底→底板垫层→底板钢筋制安→底板模板安装→底板砼→(养护)→池壁钢筋制安→池壁模板安装→池壁砼→(养护)→拆模→盖板模板→盖板钢筋→盖板砼→(养护)→回填土(人工夯实)。

污泥稳定化过程物质转化机理揭示

总结厌氧消化和好氧发酵过程物质转化过程,引用土壤学普遍认同的腐殖酸多酚合成理论来解释污泥稳定化过程有机质合成的过程机理,用传统的厌氧两阶段理论和好氧三羧酸循环理论解释有机物的降解过程。如图5所示,在一定的条件下(有氧、无氧、适宜温度等),污泥中的有机物(游离的碳水化合物)以及细菌细胞裂解释放到胞外的有机物(蛋白质、多糖等)在微生物和氧化酶的作用下,一部分有机物经过好氧的三羧酸循环或厌氧的两阶段(水解酸化和产甲烷),逐步分解为小分子有机物(丙酮酸、氨基酸等),再进一步转化为CO2、H2O、NH3(或NH+4)、CH4等无机小分子物质;另一部分有机物先转化为小分子有机物,如多酚、醌类(丙酮酸的前驱物)、氨基化合物等,再在微生物和酶的作用下,与含氮化合物聚合成富里酸,这一过程主要发生在厌氧消化的热水解阶段和好氧发酵的一次发酵阶段;接着,生成的富里酸进一步聚合,并逐步生成胡敏酸,胡敏酸进一步聚合形成腐黑物;这一过程主要发生在厌氧消化的消化阶段和好氧发酵的二次发酵和陈化阶段。至此,完成了有机物的降解与腐殖酸类物质的合成。其中,有机物的降解过程相对较快,腐殖酸的合成过程相对缓慢,特别是经过长时间的陈化过程,胡敏酸和腐黑物才缓慢形成。

经由镜检流程得知:生物膜表征的絮状物,凸显出优良形态,且膜体以内的构架很致密。

这就表明,生物膜附带着多重微生物,具有较强的抗盐度。与此同时,生物膜还潜藏细微的原生动物及后生动物,例如,枝虫、纤毛虫。

二段好氧池,生物膜被查出大规模线虫,以及线性蚯蚓。

这种耐盐的微生物,拓展了污泥体系的食物链,也延展了原有的生态体系。微生物蚕食污泥,缩减了含泥量,也缩减了平常的排放量。拟定完备工艺,带有无剩余的特性。运行起始,构建合理体系,排放少量污浊泥水。

COD去除成效

生物接触氧化工艺,可以有效去除高盐有机废水中的COD。

经过相关分析得知,进水中COD波动较大,而经过处理之后,出水COD浓度均可以降低至每升45毫克以下;COD平均浓度仅达到每升42毫克,COD去除率超出了93%。

这就表明,对污泥内的有机物,生物接触氧化工艺的处理,具有运行成效优、流程稳定的特性。氧化处理池可适应高盐态势下的体系环境。

通常来看,惯用的生化法,无法高效处理高盐有机废水。

其原因主要是:生化处理体系降低了污泥活性;絮状累积污泥慢慢解体,留存的生物难以存续。生物接触氧化工艺可有效降低污水中的盐浓度,基本可以控制在4.3%以下;平均情形之下的盐度,也被缩减直至3.7%。这种情形下,COD去除效率可以保持较高的水准。

经过长期运转,生物膜原有的耐盐特性,也在逐渐递增,能与高盐特性的水质契合。

生物接触氧化工艺可以有效提高原有的耐受特性。经由接触氧化处理之后,生物膜并不会凸显出絮状分解的倾向。而普通处理得到的活性污泥,常会使测定好的盐度数值发生改变,盐度更替造成絮状漂移。

除此以外,生物接触氧化工艺排放的污泥比较少;污泥沉降特性也超出普通处理工艺。这样做,就化解了沉降中的难题。

设备特点:

1、地埋式生活污水处理设备可埋入地表以下,地表可作为绿化或广场用地,因此该设备不占地表面积,不需盖房,更不需采暖保温。

2、地埋式生活污水处理设备由二级池子组成,一级为钢筋混凝土结构,埋深较大,另一组为钢结构,埋深较浅。钢结构池采用国内的互穿网络防腐涂料进行防腐。它是一种橡胶网络与塑料网络互相贯穿形成互穿网络聚合物,它能耐酸、碱、盐、汽油、煤油、耐老化、耐冲磨,能带来锈防锈。设备一般涂刷该涂料之后,防腐寿命可达15年以上。

3、地埋式生活污水处理设备要求采用常规的鼓风机消音措施(如隔振垫、消音器等)外,还需在鼓风机房内壁设置了新型吸音材料,使设备运行时的噪音低于50分贝,减轻对周围环境的影响。

4、本设备配有土壤脱臭设施。其利用钢筋混凝土结构池体上部空间设置改良土壤及布气管。当恶臭成份通过土壤层溶解于土壤所含的水份中,进而由于土壤的表面吸附作用及化学反应转入土壤,终被其中的微生物分解而达到脱臭目的。

5、地埋式生活污水处理设备配套全自动电器控制系统及设备损坏报警系统,设备可靠性好,因此平时无需专人管理,只需每月季度的维护和保养。

 

收藏该商铺

登录 后再收藏

提示

您的留言已提交成功!我们将在第一时间回复您~

对比框

产品对比 二维码 意见反馈

扫一扫访问手机商铺
在线留言